The Electromagnetic Wave Absorption Performance and Mechanical Properties of Cement-Based Composite Material Mixed with Functional Aggregates with High Fe2O3 and SiC

IF 1 Q4 MATERIALS SCIENCE, COMPOSITES
Zuo-shun Zhang, Chao-Shan Yang, Hua Cheng, Xiaohan Huang, Yuhao Zhu
{"title":"The Electromagnetic Wave Absorption Performance and Mechanical Properties of Cement-Based Composite Material Mixed with Functional Aggregates with High Fe2O3 and SiC","authors":"Zuo-shun Zhang, Chao-Shan Yang, Hua Cheng, Xiaohan Huang, Yuhao Zhu","doi":"10.18280/rcma.310409","DOIUrl":null,"url":null,"abstract":"Now there’re many researches on the electromagnetic radiation protection function of the cement-based electromagnetic wave absorbing materials, such materials have been widely used in various types of buildings. This paper proposed an idea for preparing a cement-based composite material by mixing functional aggregates with high content of Fe2O3 and SiC, that is, adding Fe3O4 powder and nano-SiC of different contents in the clay, and then sintering at 1190℃; the prepared aggregates showed obvious magnetic loss and dielectric loss to electromagnetic waves, and the numerical tube pressure could reach 16.83MPa. The double-layer reflectivity test board made of functional aggregates showed excellent electromagnetic wave absorption performance, its reflection loss was less than -10dB in the frequency range of 8~18GHz (corresponding to energy absorption greater than 90% EM), and its maximum RL reached -12.13dB. In addition, the compressive strength of the cement-based composite material at the age of 28 days reached 50.1 MPa, which can meet the strength requirements of building materials.","PeriodicalId":42458,"journal":{"name":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/rcma.310409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2

Abstract

Now there’re many researches on the electromagnetic radiation protection function of the cement-based electromagnetic wave absorbing materials, such materials have been widely used in various types of buildings. This paper proposed an idea for preparing a cement-based composite material by mixing functional aggregates with high content of Fe2O3 and SiC, that is, adding Fe3O4 powder and nano-SiC of different contents in the clay, and then sintering at 1190℃; the prepared aggregates showed obvious magnetic loss and dielectric loss to electromagnetic waves, and the numerical tube pressure could reach 16.83MPa. The double-layer reflectivity test board made of functional aggregates showed excellent electromagnetic wave absorption performance, its reflection loss was less than -10dB in the frequency range of 8~18GHz (corresponding to energy absorption greater than 90% EM), and its maximum RL reached -12.13dB. In addition, the compressive strength of the cement-based composite material at the age of 28 days reached 50.1 MPa, which can meet the strength requirements of building materials.
掺有高Fe2O3和SiC功能集料的水泥基复合材料的电磁波吸收性能和力学性能
目前,人们对水泥基电磁波吸收材料的电磁辐射防护功能进行了大量的研究,这种材料已广泛应用于各种类型的建筑中。本文提出了一种将高含量Fe2O3和SiC的功能集料混合制备水泥基复合材料的想法,即在粘土中加入不同含量的Fe3O4粉末和纳米SiC,然后在1190℃下烧结;制备的聚集体对电磁波表现出明显的磁损耗和介电损耗,数值管压可达16.83MPa。由功能聚集体制成的双层反射率测试板表现出优异的电磁波吸收性能,在8~18GHz的频率范围内,其反射损耗小于-10dB(对应能量吸收大于90%EM),最大RL达到-12.13dB。此外,水泥基复合材料在28天龄期的抗压强度达到50.1MPa,可以满足建筑材料的强度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信