Using Bayesian Piecewise Growth Curve Models to Handle Complex Nonlinear Trajectories

Luca Marvin, Haiyan Liu, S. Depaoli
{"title":"Using Bayesian Piecewise Growth Curve Models to Handle Complex Nonlinear Trajectories","authors":"Luca Marvin, Haiyan Liu, S. Depaoli","doi":"10.35566/jbds/v3n1/marvin","DOIUrl":null,"url":null,"abstract":"Bayesian growth curve modeling is a popular method for studying longitudinal data. In this study, we discuss a flexible extension, the Bayesian piecewise growth curve model (BPGCM), which allows the researcher to break up a trajectory into phases joined at change points called knots. By fitting BPGCMs, the researcher can specify three or more phases of growth without concern for model identification. Our goal is to provide substantive researchers with a guide for implementing this important class of models. We present a simple application of Bayesian linear BPGCMs to childrens' math achievement. Our tutorial includes Mplus code, strategies for specifying knots, and how to interpret model selection and fit indices. Extensions of the model are discussed.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v3n1/marvin","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian growth curve modeling is a popular method for studying longitudinal data. In this study, we discuss a flexible extension, the Bayesian piecewise growth curve model (BPGCM), which allows the researcher to break up a trajectory into phases joined at change points called knots. By fitting BPGCMs, the researcher can specify three or more phases of growth without concern for model identification. Our goal is to provide substantive researchers with a guide for implementing this important class of models. We present a simple application of Bayesian linear BPGCMs to childrens' math achievement. Our tutorial includes Mplus code, strategies for specifying knots, and how to interpret model selection and fit indices. Extensions of the model are discussed.
用贝叶斯分段增长曲线模型处理复杂的非线性轨迹
贝叶斯生长曲线建模是研究纵向数据的常用方法。在这项研究中,我们讨论了一个灵活的扩展,贝叶斯分段增长曲线模型(BPGCM),它允许研究人员将轨迹分解为在称为结点的变化点连接的阶段。通过拟合bpgcm,研究人员可以指定三个或更多的生长阶段,而无需考虑模型识别。我们的目标是为实质性的研究人员提供实现这类重要模型的指南。我们提出了贝叶斯线性bpgcm在儿童数学成绩中的一个简单应用。我们的教程包括Mplus代码,指定结的策略,以及如何解释模型选择和拟合指数。讨论了模型的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信