The natural extension of the Gauss map and the Hermite best approximations

Pub Date : 2021-03-02 DOI:10.5802/jtnb.1219
N. Chevallier
{"title":"The natural extension of the Gauss map and the Hermite best approximations","authors":"N. Chevallier","doi":"10.5802/jtnb.1219","DOIUrl":null,"url":null,"abstract":"Following Humbert and Lagarias, given a real number θ, we call a nonzero vector (p, q) ∈ Z × N a Hermite best approximation vector of θ if it minimizes a quadratic form f∆(x, y) = (x− yθ)2 + y 2 ∆ for at least one real number ∆ > 0. Hermite observed that if (p, q) is such a minimum with q > 0, then the fraction p/q must be a convergent of the continued fraction expansion of θ. Using minimal vectors in lattices, we give new proofs of some results of Humbert and Meignen and complete their works. In particular, we show that the proportion of Hermite best approximation vectors among convergents is almost surely ln 3/ ln 4. The main tool of the proofs is the natural extension of the Gauss map x ∈ ]0, 1[→ {1/x}.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Following Humbert and Lagarias, given a real number θ, we call a nonzero vector (p, q) ∈ Z × N a Hermite best approximation vector of θ if it minimizes a quadratic form f∆(x, y) = (x− yθ)2 + y 2 ∆ for at least one real number ∆ > 0. Hermite observed that if (p, q) is such a minimum with q > 0, then the fraction p/q must be a convergent of the continued fraction expansion of θ. Using minimal vectors in lattices, we give new proofs of some results of Humbert and Meignen and complete their works. In particular, we show that the proportion of Hermite best approximation vectors among convergents is almost surely ln 3/ ln 4. The main tool of the proofs is the natural extension of the Gauss map x ∈ ]0, 1[→ {1/x}.
分享
查看原文
高斯映射的自然扩展与Hermite最佳逼近
根据Humbert和Lagarias,给定实数θ,我们称非零向量(p,q)∈Z×N为θ的Hermite最佳逼近向量,如果它最小化了至少一个实数∆>0的二次形式f∆(x,y)=(x−yθ)2+y 2∆。Hermite观察到,如果(p,q)是q>0的最小值,那么分数p/q必须是θ的连续分数展开的收敛。利用格中的极小向量,我们给出了Humbert和Meignen的一些结果的新证明,并完成了他们的工作。特别地,我们证明了Hermite最佳逼近向量在收敛点中的比例几乎肯定是ln 3/ln 4。证明的主要工具是高斯映射x∈]0,1的自然扩展[→ {1/x}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信