{"title":"Least energy sign-changing solutions for a nonlocal anisotropic Kirchhoff type equation","authors":"Mohammed Rahmani, M. Rahmani, A. Anane, M. Massar","doi":"10.2478/mjpaa-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the existence of sign-changing solutions for the following class of fractional Kirchhoff type equations with potential (1+b[ u ]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)∈ℝN=ℝn×ℝm, \\left( {1 + b\\left[ u \\right]_\\alpha ^2} \\right)\\left( {{{\\left( { - {\\Delta _x}} \\right)}^\\alpha }u - {\\Delta _y}u} \\right) + V\\left( {x,y} \\right)u = f\\left( {x,y,u} \\right),\\left( {x,y} \\right) \\in {\\mathbb{R}^N} = {\\mathbb{R}^n} \\times {\\mathbb{R}^m}, where [ u ]α=(∫ℝN(| (-Δx)α2u |2+| ∇yu |2)dxdy)12 {\\left[ u \\right]_\\alpha } = {\\left( {\\int {_{{\\mathbb{R}^N}}\\left( {{{\\left| {{{\\left( { - {\\Delta _x}} \\right)}^{{\\alpha \\over 2}}}u} \\right|}^2} + {{\\left| {{\\nabla _y}u} \\right|}^2}} \\right)dxdy} } \\right)^{{1 \\over 2}}} . Based on variational approach and a variant of the quantitative strain lemma, for each b > 0, we show the existence of a least energy nodal solution ub. In addition, a convergence property of ub as b ↘ 0 is established.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"212 - 227"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we investigate the existence of sign-changing solutions for the following class of fractional Kirchhoff type equations with potential (1+b[ u ]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)∈ℝN=ℝn×ℝm, \left( {1 + b\left[ u \right]_\alpha ^2} \right)\left( {{{\left( { - {\Delta _x}} \right)}^\alpha }u - {\Delta _y}u} \right) + V\left( {x,y} \right)u = f\left( {x,y,u} \right),\left( {x,y} \right) \in {\mathbb{R}^N} = {\mathbb{R}^n} \times {\mathbb{R}^m}, where [ u ]α=(∫ℝN(| (-Δx)α2u |2+| ∇yu |2)dxdy)12 {\left[ u \right]_\alpha } = {\left( {\int {_{{\mathbb{R}^N}}\left( {{{\left| {{{\left( { - {\Delta _x}} \right)}^{{\alpha \over 2}}}u} \right|}^2} + {{\left| {{\nabla _y}u} \right|}^2}} \right)dxdy} } \right)^{{1 \over 2}}} . Based on variational approach and a variant of the quantitative strain lemma, for each b > 0, we show the existence of a least energy nodal solution ub. In addition, a convergence property of ub as b ↘ 0 is established.