Least energy sign-changing solutions for a nonlocal anisotropic Kirchhoff type equation

Q3 Mathematics
Mohammed Rahmani, M. Rahmani, A. Anane, M. Massar
{"title":"Least energy sign-changing solutions for a nonlocal anisotropic Kirchhoff type equation","authors":"Mohammed Rahmani, M. Rahmani, A. Anane, M. Massar","doi":"10.2478/mjpaa-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the existence of sign-changing solutions for the following class of fractional Kirchhoff type equations with potential (1+b[ u ]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)∈ℝN=ℝn×ℝm, \\left( {1 + b\\left[ u \\right]_\\alpha ^2} \\right)\\left( {{{\\left( { - {\\Delta _x}} \\right)}^\\alpha }u - {\\Delta _y}u} \\right) + V\\left( {x,y} \\right)u = f\\left( {x,y,u} \\right),\\left( {x,y} \\right) \\in {\\mathbb{R}^N} = {\\mathbb{R}^n} \\times {\\mathbb{R}^m}, where [ u ]α=(∫ℝN(| (-Δx)α2u |2+| ∇yu |2)dxdy)12 {\\left[ u \\right]_\\alpha } = {\\left( {\\int {_{{\\mathbb{R}^N}}\\left( {{{\\left| {{{\\left( { - {\\Delta _x}} \\right)}^{{\\alpha \\over 2}}}u} \\right|}^2} + {{\\left| {{\\nabla _y}u} \\right|}^2}} \\right)dxdy} } \\right)^{{1 \\over 2}}} . Based on variational approach and a variant of the quantitative strain lemma, for each b > 0, we show the existence of a least energy nodal solution ub. In addition, a convergence property of ub as b ↘ 0 is established.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"212 - 227"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we investigate the existence of sign-changing solutions for the following class of fractional Kirchhoff type equations with potential (1+b[ u ]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)∈ℝN=ℝn×ℝm, \left( {1 + b\left[ u \right]_\alpha ^2} \right)\left( {{{\left( { - {\Delta _x}} \right)}^\alpha }u - {\Delta _y}u} \right) + V\left( {x,y} \right)u = f\left( {x,y,u} \right),\left( {x,y} \right) \in {\mathbb{R}^N} = {\mathbb{R}^n} \times {\mathbb{R}^m}, where [ u ]α=(∫ℝN(| (-Δx)α2u |2+| ∇yu |2)dxdy)12 {\left[ u \right]_\alpha } = {\left( {\int {_{{\mathbb{R}^N}}\left( {{{\left| {{{\left( { - {\Delta _x}} \right)}^{{\alpha \over 2}}}u} \right|}^2} + {{\left| {{\nabla _y}u} \right|}^2}} \right)dxdy} } \right)^{{1 \over 2}}} . Based on variational approach and a variant of the quantitative strain lemma, for each b > 0, we show the existence of a least energy nodal solution ub. In addition, a convergence property of ub as b ↘ 0 is established.
一类非局部各向异性Kirchhoff型方程的最小能量符号变换解
摘要本文研究了一类具有势(1+b[u]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)∈ℝN=ℝn×ℝm、 \left({1+b\left[u\right]_\alpha^2}\right)\left({{\left({-{\Delta_x}\right)}^\alpha}u-{\Delta_y}u}\rightℝN(|(-Δx}}。基于变分方法和定量应变引理的一个变体,对于每个b>0,我们证明了一个最小能量节点解ub的存在性。此外,ub作为b的一个收敛性↘ 0已建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信