Constant rank factorisations of smooth maps, with applications to sonar

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Robinson
{"title":"Constant rank factorisations of smooth maps, with applications to sonar","authors":"Michael Robinson","doi":"10.1017/s0956792522000365","DOIUrl":null,"url":null,"abstract":"\n Sonar systems are frequently used to classify objects at a distance by using the structure of the echoes of acoustic waves as a proxy for the object’s shape and composition. Traditional synthetic aperture processing is highly effective in solving classification problems when the conditions are favourable but relies on accurate knowledge of the sensor’s trajectory relative to the object being measured. This article provides several new theoretical tools that decouple object classification performance from trajectory estimation in synthetic aperture sonar processing. The key insight is that decoupling the trajectory from classification-relevant information involves factoring a function into the composition of two functions. The article presents several new general topological invariants for smooth functions based on their factorisations over function composition. These invariants specialise to the case when a sonar platform trajectory is deformed by a non-small perturbation. The mathematical results exhibited in this article apply well beyond sonar classification problems. This article is written in a way that supports full mathematical generality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792522000365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Sonar systems are frequently used to classify objects at a distance by using the structure of the echoes of acoustic waves as a proxy for the object’s shape and composition. Traditional synthetic aperture processing is highly effective in solving classification problems when the conditions are favourable but relies on accurate knowledge of the sensor’s trajectory relative to the object being measured. This article provides several new theoretical tools that decouple object classification performance from trajectory estimation in synthetic aperture sonar processing. The key insight is that decoupling the trajectory from classification-relevant information involves factoring a function into the composition of two functions. The article presents several new general topological invariants for smooth functions based on their factorisations over function composition. These invariants specialise to the case when a sonar platform trajectory is deformed by a non-small perturbation. The mathematical results exhibited in this article apply well beyond sonar classification problems. This article is written in a way that supports full mathematical generality.
光滑地图的常秩因子分解及其在声纳中的应用
声纳系统经常用于通过使用声波回波的结构作为物体形状和成分的代理来对远处的物体进行分类。当条件有利时,传统的合成孔径处理在解决分类问题方面非常有效,但它依赖于传感器相对于被测量对象的轨迹的准确知识。本文提供了几种新的理论工具,将合成孔径声纳处理中的目标分类性能与轨迹估计解耦。关键的见解是,将轨迹与分类相关信息脱钩涉及将一个函数分解为两个函数的组合。基于光滑函数在函数组合上的因子分解,给出了几种新的光滑函数的一般拓扑不变量。这些不变量专门用于声纳平台轨迹因非小扰动而变形的情况。本文所展示的数学结果远远超出了声纳分类问题的应用范围。这篇文章的写作方式支持数学的全面通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信