A feature selection approach for terrestrial hyperspectral image analysis

IF 0.3 Q4 REMOTE SENSING
Kyle Loggenberg, Nitesh K. Poona
{"title":"A feature selection approach for terrestrial hyperspectral image analysis","authors":"Kyle Loggenberg, Nitesh K. Poona","doi":"10.4314/sajg.v9i2.20","DOIUrl":null,"url":null,"abstract":"Feature selection techniques are often employed for reducing data dimensionality, improving computational efficiency, and most importantly for selecting a subset of the most important features for model building. The present study explored the utility of a Filter-Wrapper (FW) approach for feature selection using terrestrial hyperspectral remote sensing imagery. The efficacy of the FW approach was evaluated in conjunction with the Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers, to discriminate between water-stressed and non-stressed Shiraz vines. The proposed FW approach yielded a test accuracy of 80.0% (KHAT = 0.6) for both RF and XGBoost, outperforming the more traditional Kruskal-Wallis (KW) filter by more than 20%. The FW approach was also less computationally expensive when compared with the more commonly used Sequential Floating Forward Selection (SFFS) wrapper. Additionally, we examined the effect of hyperparameter optimisation on classification accuracy and computational expense. The results showed that RF marginally outperformed XGBoost when using all wavebands (p = 176) and optimised hyperparameter values. RF yielded a test accuracy of 83.3% (KHAT = 0.67), whereas XGBoost yielded a test accuracy of 81.7% (KHAT = 0.63). Our results further show that optimising hyperparameter values yielded an overall increase in test accuracy, ranging from 0.8% to 5.0%, for both RF and XGBoost. Overall, the results highlight the effect of feature selection and optimisation on the performance of machine learning ensembles for modelling vineyard water stress.","PeriodicalId":43854,"journal":{"name":"South African Journal of Geomatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/sajg.v9i2.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Feature selection techniques are often employed for reducing data dimensionality, improving computational efficiency, and most importantly for selecting a subset of the most important features for model building. The present study explored the utility of a Filter-Wrapper (FW) approach for feature selection using terrestrial hyperspectral remote sensing imagery. The efficacy of the FW approach was evaluated in conjunction with the Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers, to discriminate between water-stressed and non-stressed Shiraz vines. The proposed FW approach yielded a test accuracy of 80.0% (KHAT = 0.6) for both RF and XGBoost, outperforming the more traditional Kruskal-Wallis (KW) filter by more than 20%. The FW approach was also less computationally expensive when compared with the more commonly used Sequential Floating Forward Selection (SFFS) wrapper. Additionally, we examined the effect of hyperparameter optimisation on classification accuracy and computational expense. The results showed that RF marginally outperformed XGBoost when using all wavebands (p = 176) and optimised hyperparameter values. RF yielded a test accuracy of 83.3% (KHAT = 0.67), whereas XGBoost yielded a test accuracy of 81.7% (KHAT = 0.63). Our results further show that optimising hyperparameter values yielded an overall increase in test accuracy, ranging from 0.8% to 5.0%, for both RF and XGBoost. Overall, the results highlight the effect of feature selection and optimisation on the performance of machine learning ensembles for modelling vineyard water stress.
一种用于地面高光谱图像分析的特征选择方法
特征选择技术通常用于降低数据维度、提高计算效率,最重要的是用于选择用于模型构建的最重要特征的子集。本研究探讨了滤波包装(FW)方法在利用陆地高光谱遥感图像进行特征选择中的实用性。结合随机森林(RF)和极限梯度提升(XGBoost)分类器评估FW方法的功效,以区分水分胁迫和非胁迫的设拉子葡萄藤。所提出的FW方法对RF和XGBoost的测试精度均为80.0%(KHAT=0.6),比更传统的Kruskal-Wallis(KW)滤波器高出20%以上。与更常用的顺序浮动正向选择(SFFS)包装器相比,FW方法的计算成本也更低。此外,我们还研究了超参数优化对分类精度和计算费用的影响。结果表明,当使用所有波段(p=176)和优化的超参数值时,RF略微优于XGBoost。RF的测试准确率为83.3%(KHAT=0.67),而XGBoost的测试准确度为81.7%(KHAT0.63)。我们的结果进一步表明,优化超参数值可使RF和XGBoost测试准确率总体提高,从0.8%到5.0%不等。总的来说,研究结果突出了特征选择和优化对机器学习组合性能的影响,用于模拟葡萄园水分胁迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
82
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信