A. Abiad, Boris Brimkov, Jane Breen, T. R. Cameron, H. Gupta, R. R. Villagr'an
{"title":"Constructions of cospectral graphs with different zero forcing numbers","authors":"A. Abiad, Boris Brimkov, Jane Breen, T. R. Cameron, H. Gupta, R. R. Villagr'an","doi":"10.13001/ela.2022.6737","DOIUrl":null,"url":null,"abstract":"Several researchers have recently explored various graph parameters that can or cannot be characterized by the spectrum of a matrix associated with a graph. In this paper, we show that several NP-hard zero forcing numbers are not characterized by the spectra of several types of associated matrices with a graph. In particular, we consider standard zero forcing, positive semidefinite zero forcing, and skew zero forcing and provide constructions of infinite families of pairs of cospectral graphs, which have different values for these numbers. We explore several methods for obtaining these cospectral graphs including using graph products, graph joins, and graph switching. Among these, we provide a construction involving regular adjacency cospectral graphs; the regularity of this construction also implies cospectrality with respect to several other matrices including the Laplacian, signless Laplacian, and normalized Laplacian. We also provide a construction where pairs of cospectral graphs can have an arbitrarily large difference between their zero forcing numbers.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6737","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
Several researchers have recently explored various graph parameters that can or cannot be characterized by the spectrum of a matrix associated with a graph. In this paper, we show that several NP-hard zero forcing numbers are not characterized by the spectra of several types of associated matrices with a graph. In particular, we consider standard zero forcing, positive semidefinite zero forcing, and skew zero forcing and provide constructions of infinite families of pairs of cospectral graphs, which have different values for these numbers. We explore several methods for obtaining these cospectral graphs including using graph products, graph joins, and graph switching. Among these, we provide a construction involving regular adjacency cospectral graphs; the regularity of this construction also implies cospectrality with respect to several other matrices including the Laplacian, signless Laplacian, and normalized Laplacian. We also provide a construction where pairs of cospectral graphs can have an arbitrarily large difference between their zero forcing numbers.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.