Eakin–Nagata–Eisenbud Theorem for Right $S$-Noetherian Rings

IF 0.6 4区 数学 Q3 MATHEMATICS
Gangyong Lee, Jongwook Baeck, J. Lim
{"title":"Eakin–Nagata–Eisenbud Theorem for Right $S$-Noetherian Rings","authors":"Gangyong Lee, Jongwook Baeck, J. Lim","doi":"10.11650/tjm/221101","DOIUrl":null,"url":null,"abstract":". The Eakin–Nagata theorem examines the condition that the Noetherian property passes through each other between subrings and extension rings in 1968. Later, a noncommutative version of Eakin–Nagata theorem was also proved. Lam called this version Eakin–Nagata–Eisenbud theorem. In addition, Anderson and Dumitrescu introduced the S -Noetherian concept which is an extended notion of the Noetherian property on commutative rings in 2002. In this paper, we consider the S -variant of Eakin–Nagata–Eisenbud theorem for general rings by using S -Noetherian modules. We also show that every right S -Noetherian domain is right Ore, which is embedded into a division ring. For a right S -Noetherian ring, we obtain sufficient conditions for its right ring of fractions to be right S -Noetherian or right Noetherian. As applications, the S -variant of Eakin–Nagata–Eisenbud theorem is applied to the composite polynomial, composite power series and composite skew polynomial rings.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/221101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

. The Eakin–Nagata theorem examines the condition that the Noetherian property passes through each other between subrings and extension rings in 1968. Later, a noncommutative version of Eakin–Nagata theorem was also proved. Lam called this version Eakin–Nagata–Eisenbud theorem. In addition, Anderson and Dumitrescu introduced the S -Noetherian concept which is an extended notion of the Noetherian property on commutative rings in 2002. In this paper, we consider the S -variant of Eakin–Nagata–Eisenbud theorem for general rings by using S -Noetherian modules. We also show that every right S -Noetherian domain is right Ore, which is embedded into a division ring. For a right S -Noetherian ring, we obtain sufficient conditions for its right ring of fractions to be right S -Noetherian or right Noetherian. As applications, the S -variant of Eakin–Nagata–Eisenbud theorem is applied to the composite polynomial, composite power series and composite skew polynomial rings.
右$S$- noether环的Eakin-Nagata-Eisenbud定理
. Eakin-Nagata定理在1968年研究了子环和扩展环之间的noether性质相互穿过的条件。后来,Eakin-Nagata定理的一个非交换版本也被证明了。Lam称这个版本为Eakin-Nagata-Eisenbud定理。此外,Anderson和Dumitrescu在2002年引入了S -Noetherian概念,这是交换环上Noetherian性质的扩展概念。本文利用S - noether模考虑了一般环上Eakin-Nagata-Eisenbud定理的S -变分。我们还证明了每一个右S - noether域都是嵌入在除法环中的右l域。对于一个右S - noether环,我们得到了它的分数的右环是右S - noether或右noether的充分条件。作为应用,将Eakin-Nagata-Eisenbud定理的S -变分应用于复合多项式、复合幂级数和复合斜多项式环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信