Eakin–Nagata–Eisenbud Theorem for Right $S$-Noetherian Rings

Pub Date : 2022-01-01 DOI:10.11650/tjm/221101
Gangyong Lee, Jongwook Baeck, J. Lim
{"title":"Eakin–Nagata–Eisenbud Theorem for Right $S$-Noetherian Rings","authors":"Gangyong Lee, Jongwook Baeck, J. Lim","doi":"10.11650/tjm/221101","DOIUrl":null,"url":null,"abstract":". The Eakin–Nagata theorem examines the condition that the Noetherian property passes through each other between subrings and extension rings in 1968. Later, a noncommutative version of Eakin–Nagata theorem was also proved. Lam called this version Eakin–Nagata–Eisenbud theorem. In addition, Anderson and Dumitrescu introduced the S -Noetherian concept which is an extended notion of the Noetherian property on commutative rings in 2002. In this paper, we consider the S -variant of Eakin–Nagata–Eisenbud theorem for general rings by using S -Noetherian modules. We also show that every right S -Noetherian domain is right Ore, which is embedded into a division ring. For a right S -Noetherian ring, we obtain sufficient conditions for its right ring of fractions to be right S -Noetherian or right Noetherian. As applications, the S -variant of Eakin–Nagata–Eisenbud theorem is applied to the composite polynomial, composite power series and composite skew polynomial rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/221101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. The Eakin–Nagata theorem examines the condition that the Noetherian property passes through each other between subrings and extension rings in 1968. Later, a noncommutative version of Eakin–Nagata theorem was also proved. Lam called this version Eakin–Nagata–Eisenbud theorem. In addition, Anderson and Dumitrescu introduced the S -Noetherian concept which is an extended notion of the Noetherian property on commutative rings in 2002. In this paper, we consider the S -variant of Eakin–Nagata–Eisenbud theorem for general rings by using S -Noetherian modules. We also show that every right S -Noetherian domain is right Ore, which is embedded into a division ring. For a right S -Noetherian ring, we obtain sufficient conditions for its right ring of fractions to be right S -Noetherian or right Noetherian. As applications, the S -variant of Eakin–Nagata–Eisenbud theorem is applied to the composite polynomial, composite power series and composite skew polynomial rings.
分享
查看原文
右$S$- noether环的Eakin-Nagata-Eisenbud定理
. Eakin-Nagata定理在1968年研究了子环和扩展环之间的noether性质相互穿过的条件。后来,Eakin-Nagata定理的一个非交换版本也被证明了。Lam称这个版本为Eakin-Nagata-Eisenbud定理。此外,Anderson和Dumitrescu在2002年引入了S -Noetherian概念,这是交换环上Noetherian性质的扩展概念。本文利用S - noether模考虑了一般环上Eakin-Nagata-Eisenbud定理的S -变分。我们还证明了每一个右S - noether域都是嵌入在除法环中的右l域。对于一个右S - noether环,我们得到了它的分数的右环是右S - noether或右noether的充分条件。作为应用,将Eakin-Nagata-Eisenbud定理的S -变分应用于复合多项式、复合幂级数和复合斜多项式环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信