AN APPLICATION OF COMPUTER SIMULATION OF AUSTENITE DECOMPOSITION IN OPTIMIZATION OF HOT ROLLING OF LOW ALLOYED STEEL BARS

Q4 Engineering
B. Smoljan, S. S. Hanza
{"title":"AN APPLICATION OF COMPUTER SIMULATION OF AUSTENITE DECOMPOSITION IN OPTIMIZATION OF HOT ROLLING OF LOW ALLOYED STEEL BARS","authors":"B. Smoljan, S. S. Hanza","doi":"10.54684/ijmmt.2023.15.1.34","DOIUrl":null,"url":null,"abstract":"Modern technologies need more and more precise computer design of manufacturing processes. Especially it is visible in thermal processing of steel, such as hot rolling, hot forging, casting, welding, 3D printing, and so on. An application of computer simulation of austenite decomposition in optimization of manufacturing of low alloyed steel bars by hot rolling was studied. For this purpose the mathematical model and computer software for very precise anticipation of TTT diagrams data was developed. The calculation of TTT diagrams data was based on chemical composition of low alloyed steels. The study started with definition mechanisms of austenite decomposition at constant subcritical temperatures. The mechanism of γ→α phase change in steel is not yet been adequately clarified. Methods for calibration of kinetic equations of austenite phase transition at constant subcritical temperatures were developed in this paper. Mathematical modeling of TTT diagrams data consists both, prediction of kinetic of phase transformations and anticipation of steel hardness. It was found out that the hardness of both, microstructural constituents and total hardness of steel mostly depends on the carbon content and temperature of γ→α phase transformation. The model of TTT diagrams data of low alloyed steel was verified in purpose to apply the model of isothermal decomposition of austenite in very precise method for prediction of microstructure composition and hardness of hot rolled steel bars. The verification of developed model was done by comparison of the calculated results of TTT diagrams data with experimentally estimated TTT diagrams data. By the simulation of hardness and microstructural composition of hot rolled steel bar the optimal cooling regime in cooling beds can be designed.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2023.15.1.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Modern technologies need more and more precise computer design of manufacturing processes. Especially it is visible in thermal processing of steel, such as hot rolling, hot forging, casting, welding, 3D printing, and so on. An application of computer simulation of austenite decomposition in optimization of manufacturing of low alloyed steel bars by hot rolling was studied. For this purpose the mathematical model and computer software for very precise anticipation of TTT diagrams data was developed. The calculation of TTT diagrams data was based on chemical composition of low alloyed steels. The study started with definition mechanisms of austenite decomposition at constant subcritical temperatures. The mechanism of γ→α phase change in steel is not yet been adequately clarified. Methods for calibration of kinetic equations of austenite phase transition at constant subcritical temperatures were developed in this paper. Mathematical modeling of TTT diagrams data consists both, prediction of kinetic of phase transformations and anticipation of steel hardness. It was found out that the hardness of both, microstructural constituents and total hardness of steel mostly depends on the carbon content and temperature of γ→α phase transformation. The model of TTT diagrams data of low alloyed steel was verified in purpose to apply the model of isothermal decomposition of austenite in very precise method for prediction of microstructure composition and hardness of hot rolled steel bars. The verification of developed model was done by comparison of the calculated results of TTT diagrams data with experimentally estimated TTT diagrams data. By the simulation of hardness and microstructural composition of hot rolled steel bar the optimal cooling regime in cooling beds can be designed.
奥氏体分解计算机模拟在低合金钢热轧优化中的应用
现代技术需要越来越精确的计算机制造工艺设计。特别是在热轧、热锻、铸造、焊接、三维打印等钢的热处理中,奥氏体分解的计算机模拟在热轧低合金钢生产优化中的应用进行了研究。为此,开发了用于非常精确地预测TTT图数据的数学模型和计算机软件。TTT图数据的计算是基于低合金钢的化学成分。该研究从奥氏体在恒定亚临界温度下分解的定义机制开始。γ的作用机制→钢中的α相变尚未得到充分阐明。本文提出了等亚临界温度下奥氏体相变动力学方程的标定方法。TTT图数据的数学建模包括相变动力学的预测和钢硬度的预测。结果表明,两者的硬度、显微组织成分和钢的总硬度主要取决于碳含量和γ→α相变。验证了低合金钢TTT图数据模型,目的是将奥氏体等温分解模型应用于热轧钢筋组织成分和硬度的精确预测。通过将TTT图数据的计算结果与实验估计的TTT图的数据进行比较,对所开发的模型进行了验证。通过对热轧钢筋硬度和组织成分的模拟,可以设计出冷床中的最佳冷却制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Manufacturing Technologies
International Journal of Modern Manufacturing Technologies Engineering-Industrial and Manufacturing Engineering
CiteScore
0.70
自引率
0.00%
发文量
15
期刊介绍: The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信