Local time in Lagrangian mechanics

Q4 Social Sciences
G. F. Torres del Castillo
{"title":"Local time in Lagrangian mechanics","authors":"G. F. Torres del Castillo","doi":"10.31349/revmexfise.19.020209","DOIUrl":null,"url":null,"abstract":"We show that under the replacement of the time by a local time in the Lagrange equations, the form of the equations is maintained if the Lagrangian does not depend explicitly on the time. We also study the corresponding modifications in the Hamilton equations and in the Hamilton--Jacobi equation.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfise.19.020209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

We show that under the replacement of the time by a local time in the Lagrange equations, the form of the equations is maintained if the Lagrangian does not depend explicitly on the time. We also study the corresponding modifications in the Hamilton equations and in the Hamilton--Jacobi equation.
拉格朗日力学中的当地时间
我们证明了在拉格朗日方程中用局部时间代替时间的情况下,如果拉格朗日量不明确地依赖于时间,则方程的形式是保持的。我们还研究了Hamilton方程和Hamilton—Jacobi方程的相应修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Mexicana De Fisica E
Revista Mexicana De Fisica E 社会科学-科学史与科学哲学
CiteScore
0.80
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Revista Mexicana de Física (Rev. Mex. Fis.) publishes original papers of interest to our readers from the physical science com unity. Language may be English or Spanish, however, given the nature of our readers, English is recommended. Articles are classified as follows: Research. Articles reporting original results in physi­cal science. Instrumentation. Articles reporting original contribu­tions on design and construction of scientific instruments. They should present new instruments and techniques oriented to physical science problems solutions. They must also report measurements performed with the described instrument. Reviews. Critical surveys of specific physical science topics in which recent published information is analyzed and discussed. They should be accessible to physics graduate students and non specialists, and provide valuable bibliography to the specialist. Comments. Short papers (four pages maximum) that assess critically papers by others authors previously published in the Revista Mexicana de Física. A comment should state clearly to which paper it refers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信