{"title":"A computational method for solving a boundary value problem for impulsive integro-differential equation","authors":"A. K. Tankeyeva, S. Mynbayeva","doi":"10.26577/ijmph.2023.v14.i1.03","DOIUrl":null,"url":null,"abstract":". In this paper, we are interested in finding a numerical solution of a linear BVP for a Fredholm IDE with a degenerate kernel subjected to impulsive actions. By Dzumabaev’s parametrization method the original problem is reduced to a multipoint BVP for the system of Fredholm IDEs with additional parameters. For fixed parameters, the special Cauchy problem for the system of FIDEs on subintervals is obtained and by using a solution to this problem, a system of algebraic equations in parameters is constructed. An algorithm for solving the BVP and its computational implementation is developed. In the algorithm, Cauchy problems for ODEs and the calculation of definite integrals are the main auxiliary problems. By using various numerical methods for solving these auxiliary problems, the proposed algorithm can be implemented in different ways. The program codes were written to solve the problem and all calculations are performed on the Matlab 2018 software platform.","PeriodicalId":40756,"journal":{"name":"International Journal of Mathematics and Physics","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/ijmph.2023.v14.i1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. In this paper, we are interested in finding a numerical solution of a linear BVP for a Fredholm IDE with a degenerate kernel subjected to impulsive actions. By Dzumabaev’s parametrization method the original problem is reduced to a multipoint BVP for the system of Fredholm IDEs with additional parameters. For fixed parameters, the special Cauchy problem for the system of FIDEs on subintervals is obtained and by using a solution to this problem, a system of algebraic equations in parameters is constructed. An algorithm for solving the BVP and its computational implementation is developed. In the algorithm, Cauchy problems for ODEs and the calculation of definite integrals are the main auxiliary problems. By using various numerical methods for solving these auxiliary problems, the proposed algorithm can be implemented in different ways. The program codes were written to solve the problem and all calculations are performed on the Matlab 2018 software platform.