Luis A. Mora, Ledoux. Yann, Héctor Ramírez, J. Yuz
{"title":"Fluid-Structure Port-Hamiltonian Model for Incompressible Flows in Tubes with Time Varying Geometries","authors":"Luis A. Mora, Ledoux. Yann, Héctor Ramírez, J. Yuz","doi":"10.1080/13873954.2020.1786841","DOIUrl":null,"url":null,"abstract":"ABSTRACT A simple and scalable finite-dimensional model based on the port-Hamiltonian framework is proposed to describe the fluid–structure interaction in tubes with time-varying geometries. For this purpose, the moving tube wall is described by a set of mass-spring-damper systems while the fluid is considered as a one-dimensional incompressible flow described by the average momentum dynamics in a set of incompressible flow sections. To couple these flow sections small compressible volumes are defined to describe the pressure between two adjacent fluid sections. The fluid-structure coupling is done through a power-preserving interconnection between velocities and forces. The resultant model includes external inputs for the fluid and inputs for external forces over the mechanical part that can be used for control or interconnection purposes. Numerical examples show the accordance of this simplified model with finite-element models reported in the literature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1786841","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1786841","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT A simple and scalable finite-dimensional model based on the port-Hamiltonian framework is proposed to describe the fluid–structure interaction in tubes with time-varying geometries. For this purpose, the moving tube wall is described by a set of mass-spring-damper systems while the fluid is considered as a one-dimensional incompressible flow described by the average momentum dynamics in a set of incompressible flow sections. To couple these flow sections small compressible volumes are defined to describe the pressure between two adjacent fluid sections. The fluid-structure coupling is done through a power-preserving interconnection between velocities and forces. The resultant model includes external inputs for the fluid and inputs for external forces over the mechanical part that can be used for control or interconnection purposes. Numerical examples show the accordance of this simplified model with finite-element models reported in the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.