Current development status of iBNCT001, demonstrator of a LINAC-based neutron source for BNCT

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Kumada, Yinuo Li, K. Yasuoka, F. Naito, T. Kurihara, T. Sugimura, M. Sato, Y. Matsumoto, Akira Matsumura, Hideki Sakurai, T. Sakae
{"title":"Current development status of iBNCT001, demonstrator of a LINAC-based neutron source for BNCT","authors":"H. Kumada, Yinuo Li, K. Yasuoka, F. Naito, T. Kurihara, T. Sugimura, M. Sato, Y. Matsumoto, Akira Matsumura, Hideki Sakurai, T. Sakae","doi":"10.3233/jnr-220029","DOIUrl":null,"url":null,"abstract":"The iBNCT project aims to develop “iBNCT001,” a demonstration device of the linac-based neutron irradiation facility for boron neutron capture therapy (BNCT) application. iBNCT001 generates an epithermal neutron beam by irradiating 8 MeV protons accelerated by a linac onto a beryllium target. Currently, the linac can drive an average proton current of 2.1 mA. Several experiments were performed using a water phantom to confirm the main physical characteristics of the neutron beam produced at the irradiation position. The measurement results demonstrated that the maximum thermal neutron flux achievable in the phantom volume was approximately 1.36 × 10 9  cm − 2  s − 1 when a normal beam collimator with a 120 mm diameter was used. This neutron beam intensity was sufficient to complete the irradiation within 30 min using the BNCT approach. In addition to normal beam collimators, extended collimators that protrude 100 mm from the wall were developed. By using an extended collimator, it is possible to prevent interference of the patient’s body with the wall when irradiating head and neck cancers. The measurement results for the extended collimator demonstrated that irradiation with the collimator could be completed within 1 h when the neutron beam is generated with an average proton current of 2.1 mA.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The iBNCT project aims to develop “iBNCT001,” a demonstration device of the linac-based neutron irradiation facility for boron neutron capture therapy (BNCT) application. iBNCT001 generates an epithermal neutron beam by irradiating 8 MeV protons accelerated by a linac onto a beryllium target. Currently, the linac can drive an average proton current of 2.1 mA. Several experiments were performed using a water phantom to confirm the main physical characteristics of the neutron beam produced at the irradiation position. The measurement results demonstrated that the maximum thermal neutron flux achievable in the phantom volume was approximately 1.36 × 10 9  cm − 2  s − 1 when a normal beam collimator with a 120 mm diameter was used. This neutron beam intensity was sufficient to complete the irradiation within 30 min using the BNCT approach. In addition to normal beam collimators, extended collimators that protrude 100 mm from the wall were developed. By using an extended collimator, it is possible to prevent interference of the patient’s body with the wall when irradiating head and neck cancers. The measurement results for the extended collimator demonstrated that irradiation with the collimator could be completed within 1 h when the neutron beam is generated with an average proton current of 2.1 mA.
用于BNCT的基于LINAC的中子源演示器iBNCT001的发展现状
iBNCT项目旨在开发“iBNCT001”,这是一种用于硼中子捕获治疗(BNCT)应用的基于直线加速器的中子辐照设施的演示设备。iBNCT001通过将由直线加速器加速的8MeV质子照射到铍靶上产生超热中子束。目前,直线加速器可以驱动2.1毫安的平均质子电流。使用水模型进行了几个实验,以确认在辐照位置产生的中子束的主要物理特性。测量结果表明,当使用直径为120 mm的正常光束准直器时,体模体积中可实现的最大热中子通量约为1.36×10 9 cm−2 s−1。该中子束强度足以使用BNCT方法在30分钟内完成辐照。除了普通光束准直器外,还开发了从墙壁伸出100毫米的扩展准直器。通过使用扩展准直器,可以防止在照射头颈癌时患者身体与壁的干扰。扩展准直器的测量结果表明,当中子束以2.1mA的平均质子电流产生时,准直器的辐照可以在1小时内完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信