{"title":"The Immersed Interface Hybridized Difference Method for Parabolic Interface Problems","authors":"Youngmok Jeon null, Son-Young Yi","doi":"10.4208/nmtma.oa-2021-0154","DOIUrl":null,"url":null,"abstract":"We propose several immersed interface hybridized difference methods (IHDMs), combined with the Crank-Nicolson time-stepping scheme, for parabolic interface problems. The IHDM is the same as the hybrid difference method away from the interface cells, but the finite difference operators on the interface cells are modified to maintain the same accuracy throughout the entire domain. For the modification process, we consider virtual extensions of two sub-solutions in the interface cells in such a way that they satisfy certain jump equations between them. We propose several different sets of jump equations and their resulting discrete methods for oneand two-dimensional problems. Some numerical results are presented to demonstrate the accuracy and robustness of the proposed methods. AMS subject classifications: 65N30, 65N38, 65N50","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2021-0154","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose several immersed interface hybridized difference methods (IHDMs), combined with the Crank-Nicolson time-stepping scheme, for parabolic interface problems. The IHDM is the same as the hybrid difference method away from the interface cells, but the finite difference operators on the interface cells are modified to maintain the same accuracy throughout the entire domain. For the modification process, we consider virtual extensions of two sub-solutions in the interface cells in such a way that they satisfy certain jump equations between them. We propose several different sets of jump equations and their resulting discrete methods for oneand two-dimensional problems. Some numerical results are presented to demonstrate the accuracy and robustness of the proposed methods. AMS subject classifications: 65N30, 65N38, 65N50
期刊介绍:
Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.