A note on edge irregularity strength of firefly graph

IF 0.4 Q4 MATHEMATICS
Umme Salma, H. M. Nagesh, D. Prahlad
{"title":"A note on edge irregularity strength of firefly graph","authors":"Umme Salma, H. M. Nagesh, D. Prahlad","doi":"10.7546/nntdm.2023.29.1.147-153","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple graph. A vertex labeling $\\psi:V(G) \\rightarrow \\{1, 2,\\ldots,\\alpha\\}$ is called $\\alpha$-labeling. For an edge $uv \\in G$, the weight of $uv$, written $z_{\\psi}(uv)$, is the sum of the labels of $u$ and $v$, i.e., $z_{\\psi}(uv)=\\psi(u)+\\psi(v)$. A vertex $\\alpha$-labeling is said to be an edge irregular $\\alpha$-labeling of $G$ if for every two distinct edges $a$ and $b$, $z_{\\psi}(a) \\neq z_{\\psi}(b)$. The minimum $\\alpha$ for which the graph $G$ contains an edge irregular $\\alpha$-labeling is known as the edge irregularity strength of $G$ and is denoted by $\\es(G)$. In this paper, we find the exact value of edge irregularity strength of different cases of firefly graph $F_{s,t,n-2s-2t-1}$ for any $s \\geq 1, t \\geq 1, n-2s-2t-1 \\geq 1 $.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.1.147-153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a simple graph. A vertex labeling $\psi:V(G) \rightarrow \{1, 2,\ldots,\alpha\}$ is called $\alpha$-labeling. For an edge $uv \in G$, the weight of $uv$, written $z_{\psi}(uv)$, is the sum of the labels of $u$ and $v$, i.e., $z_{\psi}(uv)=\psi(u)+\psi(v)$. A vertex $\alpha$-labeling is said to be an edge irregular $\alpha$-labeling of $G$ if for every two distinct edges $a$ and $b$, $z_{\psi}(a) \neq z_{\psi}(b)$. The minimum $\alpha$ for which the graph $G$ contains an edge irregular $\alpha$-labeling is known as the edge irregularity strength of $G$ and is denoted by $\es(G)$. In this paper, we find the exact value of edge irregularity strength of different cases of firefly graph $F_{s,t,n-2s-2t-1}$ for any $s \geq 1, t \geq 1, n-2s-2t-1 \geq 1 $.
萤火虫图边缘不规则强度的一个注记
设$G$是一个简单的图。顶点标记$\psi:V(G)\rightarrow\{1,2,\ldots,\alpha\}$称为$\alpha$标记。对于G$中的边$uv\,$uv$的权重,写为$z_{\psi}(uv)$,是$u$和$v$的标签之和,即$z_{\psi}(uv)=\psi(u)+\psi(v)$。顶点$\alpha$-标记被称为$G$的不规则边$\alph$-标记,如果对于每两个不同的边$A$和$b$,$z_{\psi}(A)\neqz_{\ \psi}(b)$。图$G$包含边缘不规则$\alpha$标记的最小$\alph$称为$G$的边缘不规则强度,用$\es(G)$表示。本文给出了萤火虫图$F_{s,t,n-2s-2t-1}$的不同情况下,对于任意$s\geq1,t\geq1、n-2s-2t-1\geq1$的边不规则强度的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信