DEVELOPMENT OF COMBINED ORGANOSOLV-TEMPO OXIDATION TREATMENT FOR OBTAINING CELLULOSE NANOFIBRES

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD
P. Ligero, A. de Vega, X. García
{"title":"DEVELOPMENT OF COMBINED ORGANOSOLV-TEMPO OXIDATION TREATMENT FOR OBTAINING CELLULOSE NANOFIBRES","authors":"P. Ligero, A. de Vega, X. García","doi":"10.35812/cellulosechemtechnol.2023.57.05","DOIUrl":null,"url":null,"abstract":"The aim of this work was to study and optimize the production of nano-size cellulose fibrils (NFC) by combined performic acid treatment, totally chlorine-free (TCF) bleaching and TEMPO-oxidation prior to mechanical treatment. For this purpose, a face-centered design was developed in order to optimize the independent variables governing performic treatment. Under the optimal conditions, a kappa index of 13 was achieved, which decreased to 2.2 after bleaching treatment. These low-lignin pulps were TEMPO-oxidized under different oxidizing conditions, while monitoring cellulose yield, carboxylic acid content and the degree of polymerization. The optimized conditions produced oxidized pulp with 1.4 mmol COOH/g dried nanofibre. Finally, this oxidized cellulose was subjected to high-pressure mechanical processing in order to obtain cellulose nanofibres. From the results, it can be concluded that neither the number of homogenizer passes nor the pressure affected to diameter of fibrils.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.05","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this work was to study and optimize the production of nano-size cellulose fibrils (NFC) by combined performic acid treatment, totally chlorine-free (TCF) bleaching and TEMPO-oxidation prior to mechanical treatment. For this purpose, a face-centered design was developed in order to optimize the independent variables governing performic treatment. Under the optimal conditions, a kappa index of 13 was achieved, which decreased to 2.2 after bleaching treatment. These low-lignin pulps were TEMPO-oxidized under different oxidizing conditions, while monitoring cellulose yield, carboxylic acid content and the degree of polymerization. The optimized conditions produced oxidized pulp with 1.4 mmol COOH/g dried nanofibre. Finally, this oxidized cellulose was subjected to high-pressure mechanical processing in order to obtain cellulose nanofibres. From the results, it can be concluded that neither the number of homogenizer passes nor the pressure affected to diameter of fibrils.
有机溶剂-TEMPO复合氧化处理制备纤维素纳米纤维的研究进展
研究了在机械处理前,采用高性能酸处理、全无氯漂白和tempo氧化复合工艺制备纳米级纤维素原纤维(NFC)的工艺。为此,开发了以面为中心的设计,以优化控制性能处理的自变量。在最佳条件下,kappa指数为13,漂白后kappa指数降至2.2。在不同的氧化条件下对这些低木质素纸浆进行tempo氧化,同时监测纤维素收率、羧酸含量和聚合度。优化后的工艺条件下,纳米纤维的氧化浆浓度为1.4 mmol COOH/g。最后,对氧化后的纤维素进行高压机械加工,得到纤维素纳米纤维。结果表明,均质机通过次数和压力对原纤维直径均无影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信