Francisco Odair de Paiva, O. Miyagaki, Adilson E. Presoto
{"title":"Existence of solutions for the Brezis-Nirenberg problem","authors":"Francisco Odair de Paiva, O. Miyagaki, Adilson E. Presoto","doi":"10.12775/tmna.2022.029","DOIUrl":null,"url":null,"abstract":"We are concerned with of existence of solutions to the semilinear elliptic problem\n$$\n \\begin{cases}\n - \\Delta u=\\lambda_{k}u+u^3 &\\text{in } \\Omega, \\\\\n u= 0 &\\text{on }\\partial \\Omega,\n \\end{cases}\n$$%\nin a bounded domain $\\Omega \\subset \\mathbb{R}^{4}$. Here $\\lambda_k$\nis an eigenvalue of the $-\\Delta$ in $H_0^1(\\Omega)$. We prove that this problem has a nontrivial solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We are concerned with of existence of solutions to the semilinear elliptic problem
$$
\begin{cases}
- \Delta u=\lambda_{k}u+u^3 &\text{in } \Omega, \\
u= 0 &\text{on }\partial \Omega,
\end{cases}
$$%
in a bounded domain $\Omega \subset \mathbb{R}^{4}$. Here $\lambda_k$
is an eigenvalue of the $-\Delta$ in $H_0^1(\Omega)$. We prove that this problem has a nontrivial solution.