CTAB Reverse Micelles as Catalysts for the Oxidation of Ascorbic Acid by K3[Fe(CN)6]

IF 1.3 Q3 ENGINEERING, CHEMICAL
K. Bhargavi, P. Shyamala, P. Chakravarthi, K. Nagalakshmi
{"title":"CTAB Reverse Micelles as Catalysts for the Oxidation of Ascorbic Acid by K3[Fe(CN)6]","authors":"K. Bhargavi, P. Shyamala, P. Chakravarthi, K. Nagalakshmi","doi":"10.9767/bcrec.17.1.12732.157-162","DOIUrl":null,"url":null,"abstract":"The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found  the observed first order  (k1(aq) = 5.2×10−5 s−1, k1(rev) = 61.4×10−4 s−1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×10−5 mole−1.dm3.sec−1, k2(rev) = 1.75×10−3 mole−1.dm3.sec−1)  is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.1.12732.157-162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found  the observed first order  (k1(aq) = 5.2×10−5 s−1, k1(rev) = 61.4×10−4 s−1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×10−5 mole−1.dm3.sec−1, k2(rev) = 1.75×10−3 mole−1.dm3.sec−1)  is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
CTAB反胶束作为K3[Fe(CN)6]氧化抗坏血酸的催化剂
研究了K3[Fe(CN)6]在十六烷基三甲基溴化铵反胶束体系中对抗坏血酸的氧化反应,发现在相同条件下,反胶束介质中观察到的一阶(k1(aq)=5.2×10−5 s−1,k1(rev)=61.4×10−4 s−1)速率常数是水介质的40倍左右。速率增强(k2(aq)=0.9×10−5 mol−1.dm3.sec-1,k2(rev)=1.75×10−3 mol−1.dm3.sec-1)归因于反胶束中的大浓度效应和较低的介电常数。反应速率随着W={[H2O]/[表面活性剂]}的增加而增加,这可以用水池的离子强度来解释。基于Berezin拟相模型解释了表面活性剂浓度对速率的影响。版权所有©2021作者所有,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.70%
发文量
52
审稿时长
12 weeks
期刊介绍: Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信