{"title":"A 3-queue polling system with join the shortest-serve the longest policy","authors":"Efrat Perel , Nir Perel , Uri Yechiali","doi":"10.1016/j.indag.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>In 1987, J.W. Cohen analyzed the so-called Serve the Longest Queue (SLQ) queueing system, where a single server attends two non-symmetric </span><span><math><mrow><mi>M</mi><mo>/</mo><mi>G</mi><mo>/</mo><mn>1</mn></mrow></math></span><span><span>-type queues, exercising a non-preemptive priority switching policy. Cohen further analyzed in 1998 a non-symmetric 2-queue Markovian system, where newly arriving customers follow the Join the Shortest Queue (JSQ) discipline. The current paper generalizes and extends Cohen’s works by studying a combined JSQ–SLQ model, and by broadening the scope of analysis to a non-symmetric 3-queue system, where arriving customers follow the JSQ strategy and a single server exercises the preemptive priority SLQ discipline. The system states’ multi-dimensional probability distribution function is derived while applying a non-conventional representation of the underlying process’s state-space. The analysis combines both </span>Probability Generating Functions<span> and Matrix Geometric methodologies. It is shown that the joint JSQ–SLQ operating policy achieves extremely well the goal of balancing between queue sizes. This is emphasized when calculating the Gini Index associated with the differences between mean queue sizes: the value of the coefficient is close to zero. Extensive numerical results are presented.</span></span></p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"34 5","pages":"Pages 1101-1120"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357722000908","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 1987, J.W. Cohen analyzed the so-called Serve the Longest Queue (SLQ) queueing system, where a single server attends two non-symmetric -type queues, exercising a non-preemptive priority switching policy. Cohen further analyzed in 1998 a non-symmetric 2-queue Markovian system, where newly arriving customers follow the Join the Shortest Queue (JSQ) discipline. The current paper generalizes and extends Cohen’s works by studying a combined JSQ–SLQ model, and by broadening the scope of analysis to a non-symmetric 3-queue system, where arriving customers follow the JSQ strategy and a single server exercises the preemptive priority SLQ discipline. The system states’ multi-dimensional probability distribution function is derived while applying a non-conventional representation of the underlying process’s state-space. The analysis combines both Probability Generating Functions and Matrix Geometric methodologies. It is shown that the joint JSQ–SLQ operating policy achieves extremely well the goal of balancing between queue sizes. This is emphasized when calculating the Gini Index associated with the differences between mean queue sizes: the value of the coefficient is close to zero. Extensive numerical results are presented.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.