{"title":"Boron toxicity induces sulfate transporters at transcriptional level in Arabidopsis thaliana","authors":"C. Kayıhan, Emre Aksoy, Su Naz Mutlu","doi":"10.55730/1300-008x.2740","DOIUrl":null,"url":null,"abstract":": Plants activate glutathione (GSH)-dependent detoxification pathways at biochemical and molecular levels under boron (B) toxicity. Sulfate uptake and transport are necessary for GSH biosynthesis in plants. Therefore, the transcriptional regulation of some sulfate transporters was determined in this study to clarify the importance of these transporters in leaf and root tissues of Arabidopsis thaliana under toxic B conditions. The expression level of SULTR1;3 was dramatically increased in leaf and root tissues under moderate and severe toxic B conditions, suggesting source-to-sink sulfate translocation under B toxicity. Stable expression levels of SULTR2;1 , SULTR2;2 , and low SULTR3;5 expression might restrict the sulfate movement into the xylem in leaves. SULTR3;1 , SULTR3;2 , SULTR3;3 , SULTR3;4 , SULTR4;1 and SULTR4;2 were induced in root tissues under toxic B conditions, indicating an induction of root-to-shoot sulfate translocation. These results showed that B toxicity might disrupt the homogeneous distribution of sulfate and sulfur-containing compounds in both tissues of A. thaliana . Moreover, we performed in silico analysis of microarray experiments to determine the common differentially expressed genes (DEGs) under B toxicity and sulfur deficiency. Gene ontology, hierarchical clustering, and coexpression network analyses of these DEGs demonstrated the requirement of sulfate transporters under B toxicity. A set of genes involved in sulfur metabolism coexpress with sulfate transporters under B toxicity. To the best of our knowledge, this is the first report focusing on the molecular regulation of sulfate transporters in Arabidopsis thaliana under B toxicity.","PeriodicalId":23369,"journal":{"name":"Turkish Journal of Botany","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.55730/1300-008x.2740","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
: Plants activate glutathione (GSH)-dependent detoxification pathways at biochemical and molecular levels under boron (B) toxicity. Sulfate uptake and transport are necessary for GSH biosynthesis in plants. Therefore, the transcriptional regulation of some sulfate transporters was determined in this study to clarify the importance of these transporters in leaf and root tissues of Arabidopsis thaliana under toxic B conditions. The expression level of SULTR1;3 was dramatically increased in leaf and root tissues under moderate and severe toxic B conditions, suggesting source-to-sink sulfate translocation under B toxicity. Stable expression levels of SULTR2;1 , SULTR2;2 , and low SULTR3;5 expression might restrict the sulfate movement into the xylem in leaves. SULTR3;1 , SULTR3;2 , SULTR3;3 , SULTR3;4 , SULTR4;1 and SULTR4;2 were induced in root tissues under toxic B conditions, indicating an induction of root-to-shoot sulfate translocation. These results showed that B toxicity might disrupt the homogeneous distribution of sulfate and sulfur-containing compounds in both tissues of A. thaliana . Moreover, we performed in silico analysis of microarray experiments to determine the common differentially expressed genes (DEGs) under B toxicity and sulfur deficiency. Gene ontology, hierarchical clustering, and coexpression network analyses of these DEGs demonstrated the requirement of sulfate transporters under B toxicity. A set of genes involved in sulfur metabolism coexpress with sulfate transporters under B toxicity. To the best of our knowledge, this is the first report focusing on the molecular regulation of sulfate transporters in Arabidopsis thaliana under B toxicity.
期刊介绍:
The Turkish Journal of Botany is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts manuscripts (in English) covering all areas of plant biology (including genetics, evolution, systematics, structure, function, development, diversity, conservation biology, biogeography, paleobotany, ontogeny, functional morphology, ecology, reproductive biology, and pollination biology), all levels of organisation (molecular to ecosystem), and all plant groups and allied organisms (algae, fungi, and lichens). Authors are required to frame their research questions and discuss their results in terms of major questions in plant biology. In general, papers that are too narrowly focused, purely descriptive, or broad surveys, or that contain only preliminary data or natural history, will not be considered (*).
The following types of article will be considered:
1. Research articles: Original research in various fields of botany will be evaluated as research articles.
2. Research notes: These include articles such as preliminary notes on a study or manuscripts on the morphological, anatomical, cytological, physiological, biochemical, and other properties of plant, algae, lichen and fungi species.
3. Reviews: Reviews of recent developments, improvements, discoveries, and ideas in various fields of botany.
4. Letters to the editor: These include opinions, comments relating to the publishing policy of the Turkish Journal of Botany, news, and suggestions. Letters should not exceed one journal page.
(*) 1. Raw floristic lists (of algae, lichens, fungi, or plants), species descriptions, chorological studies, and plant sociology studies without any additional independent approaches.
2. Comparative morphology and anatomy studies (that do not cover a family, tribe, subtribe, genus, subgenus, section, subsection, or species complexes with taxonomical problems) without one or more independent additional approaches such as phylogenetical, micromorphological, chromosomal and anatomical analyses.
3. Revisions of family, tribe, genus, subgenus, section, subsection, or species complexes without any original outputs such as taxonomical status changes, IUCN categories, and phenological and ecological analyses.
4. New taxa of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 3 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.
5. New taxa of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 5 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.