Virus induced PhFTRv gene silencing results in yellow-green leaves and reduced cold tolerance in petunia

IF 0.8 4区 生物学 Q4 PLANT SCIENCES
L. Sang, L. Peng, Z. Qiu, F. Luo, G. Chen, L. Gao, Y. Yu, J. Liu
{"title":"Virus induced PhFTRv gene silencing results in yellow-green leaves and reduced cold tolerance in petunia","authors":"L. Sang, L. Peng, Z. Qiu, F. Luo, G. Chen, L. Gao, Y. Yu, J. Liu","doi":"10.32615/bp.2020.151","DOIUrl":null,"url":null,"abstract":"Ferredoxin-thioredoxin reductase (FTR) is an iron-sulfur protein that supplies electrons from photochemically reduced ferredoxin (Fd) to thioredoxin (Trx) in the ferredoxin/thioredoxin system in chloroplasts. The FTR is a heterodimer with a variable subunit (FTRv) and a catalytic subunit (FTRc). The function of FTRv is not well known. In petunia (Petunia hybrida), FTRv is a single-copy gene, which is named PhFTRv. In this study, the spatio-temporal expression of PhFTRv in petunia was analyzed, and PhFTRv transcription was found to be high in leaves and stems. A tobacco rattle virus gene silencing was used in this study. Virus induced gene silencing-mediated PhFTRv silencing resulted in large yellow-green leaves, delayed flowering, and reduced cold tolerance in petunia plants. Additional key words: flowering, chloroplasts, chlorophyll, leaf development, Petunia hybrida, photosynthesis, temperature stress. Submitted 28 June 2020, last revision 27 September 2020, accepted 12 October 2020. Abbreviations: ci internal CO2 concentration; Fd ferredoxin; FTR ferredoxin-thioredoxin reductase; gs stomatal conductance; NTRC NADPH-dependent thioredoxin reductase C; PN net photosynthetic rate; TRV tobacco rattle virus; Trx thioredoxin; VIGS virus induced gene silencing. Acknowledgements: This research was supported by the National Natural Science Foundation of China (31770737, 31870692 and 31661143047) and the National Key Research and Development Plan (2018YFD100015). * Corresponding author; e-mail: juanxuliu@scau.edu.cn This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2020.151","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ferredoxin-thioredoxin reductase (FTR) is an iron-sulfur protein that supplies electrons from photochemically reduced ferredoxin (Fd) to thioredoxin (Trx) in the ferredoxin/thioredoxin system in chloroplasts. The FTR is a heterodimer with a variable subunit (FTRv) and a catalytic subunit (FTRc). The function of FTRv is not well known. In petunia (Petunia hybrida), FTRv is a single-copy gene, which is named PhFTRv. In this study, the spatio-temporal expression of PhFTRv in petunia was analyzed, and PhFTRv transcription was found to be high in leaves and stems. A tobacco rattle virus gene silencing was used in this study. Virus induced gene silencing-mediated PhFTRv silencing resulted in large yellow-green leaves, delayed flowering, and reduced cold tolerance in petunia plants. Additional key words: flowering, chloroplasts, chlorophyll, leaf development, Petunia hybrida, photosynthesis, temperature stress. Submitted 28 June 2020, last revision 27 September 2020, accepted 12 October 2020. Abbreviations: ci internal CO2 concentration; Fd ferredoxin; FTR ferredoxin-thioredoxin reductase; gs stomatal conductance; NTRC NADPH-dependent thioredoxin reductase C; PN net photosynthetic rate; TRV tobacco rattle virus; Trx thioredoxin; VIGS virus induced gene silencing. Acknowledgements: This research was supported by the National Natural Science Foundation of China (31770737, 31870692 and 31661143047) and the National Key Research and Development Plan (2018YFD100015). * Corresponding author; e-mail: juanxuliu@scau.edu.cn This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence
病毒诱导的PhFTRv基因沉默导致矮牵牛叶片黄绿,耐寒性降低
铁氧还蛋白硫氧还蛋白还原酶(FTR)是一种铁硫蛋白,在叶绿体中的铁氧还素/硫氧还素系统中,它将光化学还原的铁氧还给氧还蛋白(Fd)提供电子。FTR是一种具有可变亚基(FTRv)和催化亚基(FTRc)的异二聚体。FTRv的功能尚不清楚。矮牵牛(petunia hybrida)中的FTRv是一个单拷贝基因,命名为PhFTRv。在本研究中,分析了PhFTRv在矮牵牛中的时空表达,发现PhFTRv在叶和茎中的转录较高。本研究采用烟草拨浪鼓病毒基因沉默技术。病毒诱导的基因沉默介导的PhFTRv沉默导致矮牵牛植株的大黄绿叶、开花延迟和抗寒性降低。附加关键词:开花,叶绿体,叶绿素,叶片发育,矮牵牛,光合作用,温度胁迫。2020年6月28日提交,最后一次修订于2020年9月27日,于2020年10月12日接受。缩写:ci内部CO2浓度;Fd-ferredoxin;FTR铁氧还蛋白硫氧还蛋白还原酶;gs气孔导度;NTRC NADPH依赖性硫氧还蛋白还原酶C;PN净光合速率;TRV烟草拨浪鼓病毒;Trx硫氧还蛋白;VIGS病毒诱导的基因沉默。鸣谢:本研究得到了国家自然科学基金(317707373187069231661143047)和国家重点研发计划(2018YFD100015)的资助。*通讯作者;电子邮件:juanxuliu@scau.edu.cn这是一篇根据知识共享BY-NC-ND许可证条款分发的开放获取文章
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信