ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS

Q3 Mathematics
Zahid Bashir Monga, W. M. Shah
{"title":"ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS","authors":"Zahid Bashir Monga, W. M. Shah","doi":"10.15826/umj.2023.1.009","DOIUrl":null,"url":null,"abstract":"Let \\(\\mathbb{C}^{m\\times m}\\) be the set of all \\(m\\times m\\) matrices whose  entries are in \\(\\mathbb{C},\\) the set of complex numbers. Then \\(P(z):=\\sum\\limits_{j=0}^nA_jz^j,\\) \\(A_j\\in \\mathbb{C}^{m\\times m},\\) \\(0\\leq j\\leq n\\) is called a matrix polynomial. If \\(A_{n}\\neq 0\\), then \\(P(z)\\) is said to be a matrix polynomial of degree \\(n\\). In this paper we prove some results for the  bound estimates of the eigenvalues of some lacunary type of matrix polynomials.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2023.1.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb{C}^{m\times m}\) be the set of all \(m\times m\) matrices whose  entries are in \(\mathbb{C},\) the set of complex numbers. Then \(P(z):=\sum\limits_{j=0}^nA_jz^j,\) \(A_j\in \mathbb{C}^{m\times m},\) \(0\leq j\leq n\) is called a matrix polynomial. If \(A_{n}\neq 0\), then \(P(z)\) is said to be a matrix polynomial of degree \(n\). In this paper we prove some results for the  bound estimates of the eigenvalues of some lacunary type of matrix polynomials.
一类特殊矩阵多项式特征值的CAUCHY型界
设\(\mathbb{C}^{m\times m}\)是所有\(m\timers m\)矩阵的集合,这些矩阵的项在\(\math bb{C},\)复数的集合中。则将\(P(z):=\sum\limits_{j=0}^nA_jz^j,\)\(A_j\in\mathbb{C}^{m\times m},\)\(0\leq j\leq n \)称为矩阵多项式。如果\(A_{n}\neq0\),则称\(P(z)\)是次\(n)的矩阵多项式。本文证明了一些空位型矩阵多项式特征值的界估计的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信