{"title":"A review on in-situ process analytical techniques for the thermochemical conversion of coal and biomass","authors":"Jie Chen, Yongping Wu, Tao Xu, S. Bhattacharya","doi":"10.1515/revce-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract Coal and biomass are important feedstocks for carbon energy from thermochemical conversion process. Fully understanding the analytical technology that characterizes the changes in physicochemical properties and structural characteristics of coal and biomass during the thermochemical reactions is a key prerequisite for the realization of appropriate utilization of energy fuels. Modern in-situ process analysis technology can accomplish the in-situ detection of the experimental process, and therefore reflect the experimental process more accurately. Moreover, it is developing towards automation, intelligentization, and comprehensive detection. Based on the characteristics of each detection technology, this paper summarizes the basic principles, application scope and performance characteristics of the three advanced in-situ process analysis technologies: hyphenated technology, synchrotron radiation, and online analysis. The practicability and accuracy of each detection technology in coal and biomass research are compared and analyzed, and its latest application and development trend are elucidated. These tools not only make up for the shortcomings of traditional detection techniques in characterizing the in-situ reaction, but also provide complementary information on molecular microscopic changes during fuel thermal conversion. This review paper can provide insights for relevant researchers in the selection of analytical techniques, and promote in-depth study on microcosmic mechanism of fuel conversion.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2023-0003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Coal and biomass are important feedstocks for carbon energy from thermochemical conversion process. Fully understanding the analytical technology that characterizes the changes in physicochemical properties and structural characteristics of coal and biomass during the thermochemical reactions is a key prerequisite for the realization of appropriate utilization of energy fuels. Modern in-situ process analysis technology can accomplish the in-situ detection of the experimental process, and therefore reflect the experimental process more accurately. Moreover, it is developing towards automation, intelligentization, and comprehensive detection. Based on the characteristics of each detection technology, this paper summarizes the basic principles, application scope and performance characteristics of the three advanced in-situ process analysis technologies: hyphenated technology, synchrotron radiation, and online analysis. The practicability and accuracy of each detection technology in coal and biomass research are compared and analyzed, and its latest application and development trend are elucidated. These tools not only make up for the shortcomings of traditional detection techniques in characterizing the in-situ reaction, but also provide complementary information on molecular microscopic changes during fuel thermal conversion. This review paper can provide insights for relevant researchers in the selection of analytical techniques, and promote in-depth study on microcosmic mechanism of fuel conversion.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.