{"title":"Comparative analysis of the effect of 6-azacytidine, ribavirin and cyclocytidine on the synthesis of adenoviral polypeptides","authors":"L. Nosach, L. Usenko, I. Alexeeva","doi":"10.7124/BC.000A42","DOIUrl":null,"url":null,"abstract":"Aim. Comparative study of the effect of antiviral nucleoside analogues 6-azacytidine (6-azaC), ribavirin (Rbv) and cyclocytidine (CycloC) on the synthesis of adenoviral (ADV) polypeptides in cell cultures. Methods. Luminescent microscopy, immunofluorescent assay of hexon antigen, SDS-polyacrylamide gel electrophoresis of 14 C-labeled proteins. Results. 6-AzaC and Rbv are able to block completely the expression of adenoviral genome, switching off the synthesis of both early and late structural viral polypeptides. Rbv can also inhibit the formation of immunologically active hexon trimers and intranuclear inclusion bodies of the late type. The effect of CycloC on the functional activity of adenoviral genome is different: it is able to completely block the late, but not early function of the viral genome associated with the synthesis of 72K DNA-binding protein. The synthesis of this protein stopped only after the synthesis of the whole spectrum of polypeptides of structural proteins. Conclusion. The peculiarities of the effect of nucleoside analogues on the synthesis of adenoviral polypeptides were established. All studied nucleosides are able to suppress the synthesis; however, the specific profiles of their biological activity are determined by the structure and concentration of the compounds.","PeriodicalId":39444,"journal":{"name":"Biopolymers and Cell","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers and Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7124/BC.000A42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Aim. Comparative study of the effect of antiviral nucleoside analogues 6-azacytidine (6-azaC), ribavirin (Rbv) and cyclocytidine (CycloC) on the synthesis of adenoviral (ADV) polypeptides in cell cultures. Methods. Luminescent microscopy, immunofluorescent assay of hexon antigen, SDS-polyacrylamide gel electrophoresis of 14 C-labeled proteins. Results. 6-AzaC and Rbv are able to block completely the expression of adenoviral genome, switching off the synthesis of both early and late structural viral polypeptides. Rbv can also inhibit the formation of immunologically active hexon trimers and intranuclear inclusion bodies of the late type. The effect of CycloC on the functional activity of adenoviral genome is different: it is able to completely block the late, but not early function of the viral genome associated with the synthesis of 72K DNA-binding protein. The synthesis of this protein stopped only after the synthesis of the whole spectrum of polypeptides of structural proteins. Conclusion. The peculiarities of the effect of nucleoside analogues on the synthesis of adenoviral polypeptides were established. All studied nucleosides are able to suppress the synthesis; however, the specific profiles of their biological activity are determined by the structure and concentration of the compounds.
Biopolymers and CellBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.10
自引率
0.00%
发文量
9
期刊介绍:
“Biopolymer and cell” is published since 1985 at the Institute of Molecular Biology and Genetics NAS of Ukraine under the supervision of the National Academy of Sciences of Ukraine. Our journal covers a wide scope of problems related to molecular biology and genetics including structural and functional genomics, transcriptomics, proteomics, bioinformatics, biomedicine, molecular enzymology, molecular virology and immunology, theoretical bases of biotechnology, physics and physical chemistry of proteins and nucleic acids and bioorganic chemistry.