Fast algorithm for factoring difference operators

IF 0.4 Q4 MATHEMATICS, APPLIED
Yi Zhou, M. V. Hoeij
{"title":"Fast algorithm for factoring difference operators","authors":"Yi Zhou, M. V. Hoeij","doi":"10.1145/3377006.3377023","DOIUrl":null,"url":null,"abstract":"Beke (1894) gave an algorithm that factors any differential operator and that algorithm can be used for difference operators as well. Bronstein improved Beke’s algorithm (see [2]). To find an order-m right-hand factor of an order-n operator using Beke-Bronstein’s algorithm, we need to create a difference system of order N = ( n m ) and solve that system. Experiments show that this is practical for n ≤ 8, or n = 9 if m ≤ 3, but beyond that N becomes too large. Our goal is a new method to find factors without increasing the order.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"53 1","pages":"150 - 152"},"PeriodicalIF":0.4000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3377006.3377023","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377006.3377023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Beke (1894) gave an algorithm that factors any differential operator and that algorithm can be used for difference operators as well. Bronstein improved Beke’s algorithm (see [2]). To find an order-m right-hand factor of an order-n operator using Beke-Bronstein’s algorithm, we need to create a difference system of order N = ( n m ) and solve that system. Experiments show that this is practical for n ≤ 8, or n = 9 if m ≤ 3, but beyond that N becomes too large. Our goal is a new method to find factors without increasing the order.
差分算子的快速分解算法
Beke(1894)给出了一种可以分解任何微分算子的算法,该算法也可以用于差分算子。Bronstein改进了Beke的算法(见[2])。为了使用Beke-Bronstein算法找到o (N)算子的o (m)右因子,我们需要创建一个N = (N m)阶的差分系统并求解该系统。实验表明,当n≤8时这是可行的,当m≤3时n = 9,但超过这个n就太大了。我们的目标是找到一种不增加阶数的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信