Inverse problem for integro-differential Kelvin–Voigt equations

IF 0.9 4区 数学 Q2 MATHEMATICS
Kh. Khompysh, Nursaule K. Nugymanova
{"title":"Inverse problem for integro-differential Kelvin–Voigt equations","authors":"Kh. Khompysh, Nursaule K. Nugymanova","doi":"10.1515/jiip-2020-0157","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the existence and uniqueness of a strong solution of the inverse problem of determining a coefficient of right-hand side of the integro-differential Kelvin–Voigt equation are investigated. The unknown coefficient that we search defends on space variables. Additional information on a solution of the inverse problem is given here as an integral overdetermination condition. The original inverse problem is reduced to study an equivalent inverse problem with homogeneous initial condition. Then the equivalences of the last inverse problem to an operator equation of second kind is proved. We establish the sufficient conditions for the unique solvability of the operator equation of second kind.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2020-0157","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper, the existence and uniqueness of a strong solution of the inverse problem of determining a coefficient of right-hand side of the integro-differential Kelvin–Voigt equation are investigated. The unknown coefficient that we search defends on space variables. Additional information on a solution of the inverse problem is given here as an integral overdetermination condition. The original inverse problem is reduced to study an equivalent inverse problem with homogeneous initial condition. Then the equivalences of the last inverse problem to an operator equation of second kind is proved. We establish the sufficient conditions for the unique solvability of the operator equation of second kind.
积分-微分Kelvin-Voigt方程的反问题
摘要本文研究了积分微分Kelvin–Voigt方程右手边系数反问题强解的存在性和唯一性。我们搜索的未知系数在空间变量上进行防御。关于反问题的解的附加信息在这里作为积分超定条件给出。将原逆问题简化为具有齐次初始条件的等价逆问题。然后证明了最后一个逆问题与第二类算子方程的等价性。我们建立了第二类算子方程唯一可解的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信