Choosing between prediction and explanation in geological engineering: lessons from psychology

IF 1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
A. Mitelman, Beverly Yang, D. Elmo, Yahel Giat
{"title":"Choosing between prediction and explanation in geological engineering: lessons from psychology","authors":"A. Mitelman, Beverly Yang, D. Elmo, Yahel Giat","doi":"10.1080/03080188.2023.2234216","DOIUrl":null,"url":null,"abstract":"ABSTRACT In their highly influential paper, Yarkoni, Tal, and Jacob Westfall. 2017. “Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning.” Perspectives on Psychological Science 12 (6):1100–1122. https://doi.org/10.1177/1745691617693393 the authors highlight difficulties in traditional explanatory research in the field of psychology and argue in favour of novel data-driven science. By applying machine-learning methods to large data sets, predictive power has been shown to increase significantly. Geological engineers are responsible for a wide range of applications, including the design of tunnels, dams, foundations, and mines. While the field of geological engineering stands on solid mechanistic grounds, we argue that its predictive aspect aligns more closely with psychology than other mechanistic sciences. We therefore propose a paradigm shift in geological engineering research towards a prediction-centric approach. Potentially, this could enhance cost-effectiveness in structural design and lead to substantial societal savings.","PeriodicalId":50352,"journal":{"name":"Interdisciplinary Science Reviews","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Science Reviews","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1080/03080188.2023.2234216","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In their highly influential paper, Yarkoni, Tal, and Jacob Westfall. 2017. “Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning.” Perspectives on Psychological Science 12 (6):1100–1122. https://doi.org/10.1177/1745691617693393 the authors highlight difficulties in traditional explanatory research in the field of psychology and argue in favour of novel data-driven science. By applying machine-learning methods to large data sets, predictive power has been shown to increase significantly. Geological engineers are responsible for a wide range of applications, including the design of tunnels, dams, foundations, and mines. While the field of geological engineering stands on solid mechanistic grounds, we argue that its predictive aspect aligns more closely with psychology than other mechanistic sciences. We therefore propose a paradigm shift in geological engineering research towards a prediction-centric approach. Potentially, this could enhance cost-effectiveness in structural design and lead to substantial societal savings.
地质工程中预测与解释的选择:来自心理学的教训
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Science Reviews
Interdisciplinary Science Reviews 综合性期刊-综合性期刊
CiteScore
2.30
自引率
9.10%
发文量
20
审稿时长
>12 weeks
期刊介绍: Interdisciplinary Science Reviews is a quarterly journal that aims to explore the social, philosophical and historical interrelations of the natural sciences, engineering, mathematics, medicine and technology with the social sciences, humanities and arts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信