Performance Evaluation of Classification Algorithms to Detect Bee Swarming Events Using Sound

Signals Pub Date : 2022-11-03 DOI:10.3390/signals3040048
Kiromitis I. Dimitrios, Christos V. Bellos, K. Stefanou, G. Stergios, Ioannis O. Andrikos, Thomas Katsantas, Sotirios Kontogiannis
{"title":"Performance Evaluation of Classification Algorithms to Detect Bee Swarming Events Using Sound","authors":"Kiromitis I. Dimitrios, Christos V. Bellos, K. Stefanou, G. Stergios, Ioannis O. Andrikos, Thomas Katsantas, Sotirios Kontogiannis","doi":"10.3390/signals3040048","DOIUrl":null,"url":null,"abstract":"This paper presents a machine-learning approach for detecting swarming events. Three different classification algorithms are tested: The k-Nearest Neighbors algorithm (k-NN) and Support Vector Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for biomedical image segmentation. Next, the authors present their experimental scenario of collecting audio data of swarming and non-swarming events and evaluating the results from the k-NN and SVM classifiers and their proposed CNN algorithm. Finally, the authors compare these three methods and present the cross-comparison results of the optimal method for early and late/close-to-the-event detection of swarming.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3040048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a machine-learning approach for detecting swarming events. Three different classification algorithms are tested: The k-Nearest Neighbors algorithm (k-NN) and Support Vector Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for biomedical image segmentation. Next, the authors present their experimental scenario of collecting audio data of swarming and non-swarming events and evaluating the results from the k-NN and SVM classifiers and their proposed CNN algorithm. Finally, the authors compare these three methods and present the cross-comparison results of the optimal method for early and late/close-to-the-event detection of swarming.
利用声音检测蜂群事件的分类算法性能评价
本文提出了一种用于检测群集事件的机器学习方法。测试了三种不同的分类算法:k-近邻算法(k-NN)和支持向量机(SVM),以及作者最新提出的用于生物医学图像分割的U-Net卷积神经网络(CNN)。接下来,作者介绍了他们的实验场景,即收集群集和非群集事件的音频数据,并评估k-NN和SVM分类器以及他们提出的CNN算法的结果。最后,作者对这三种方法进行了比较,并给出了集群早期和晚期/接近事件检测的最优方法的交叉比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信