Analysis of the efficiency of a virtual-optical multiplexing method, by using theta modulation

TecnoLogicas Pub Date : 2017-05-15 DOI:10.22430/22565337.699
Javier A. Vargas Valencia
{"title":"Analysis of the efficiency of a virtual-optical multiplexing method, by using theta modulation","authors":"Javier A. Vargas Valencia","doi":"10.22430/22565337.699","DOIUrl":null,"url":null,"abstract":"We present an efficient virtual-optical multiplexing method for compressing information contained in gray level images. The efficiency is measured using three parameters: quality factors of recovered images, memory saving percentage achieved, and number of multiplexed images in the package. Theta modulation techniques are applied, to process an N number of gray level images, by using a virtual-optical 2f architecture, from which we obtain a complex package M, to be stored as two images, amplitude and phase, in commercial formats. We apply pixel optimization and Fourier plane filtering to amplitude and phase images, respectively, storing only a percentage of the Fourier plane with a pixel dynamic range optimization. The stored package spends much less memory than individual images. The recovered images after the demultiplexing process are compared with the original ones by using correlation coefficient, obtaining high quality factors for decompressed images. We perform simulations, showing the efficiency of the proposed process, and our results are compared to the same factors reported in recent publications, making our improvements evident.","PeriodicalId":30469,"journal":{"name":"TecnoLogicas","volume":"20 1","pages":"173-184"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TecnoLogicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22430/22565337.699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an efficient virtual-optical multiplexing method for compressing information contained in gray level images. The efficiency is measured using three parameters: quality factors of recovered images, memory saving percentage achieved, and number of multiplexed images in the package. Theta modulation techniques are applied, to process an N number of gray level images, by using a virtual-optical 2f architecture, from which we obtain a complex package M, to be stored as two images, amplitude and phase, in commercial formats. We apply pixel optimization and Fourier plane filtering to amplitude and phase images, respectively, storing only a percentage of the Fourier plane with a pixel dynamic range optimization. The stored package spends much less memory than individual images. The recovered images after the demultiplexing process are compared with the original ones by using correlation coefficient, obtaining high quality factors for decompressed images. We perform simulations, showing the efficiency of the proposed process, and our results are compared to the same factors reported in recent publications, making our improvements evident.
利用θ调制的虚拟光多路复用方法的效率分析
提出了一种有效的虚拟光复用方法来压缩灰度图像中的信息。使用三个参数来衡量效率:恢复图像的质量因子、实现的内存节省百分比和封装中的多路复用图像数量。通过使用虚拟光学2f架构,应用Theta调制技术来处理N个灰度图像,从中我们获得一个复杂的包M,以商业格式存储为两个图像,振幅和相位。我们分别对幅值和相位图像应用像素优化和傅立叶平面滤波,通过像素动态范围优化仅存储傅立叶平面的一部分。存储的包比单个映像占用的内存少得多。利用相关系数对解复用后的恢复图像与原始图像进行比较,得到解复用后图像的高质量因子。我们进行了模拟,显示了所提出过程的效率,并将我们的结果与最近出版物中报道的相同因素进行了比较,使我们的改进显而易见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
30
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信