Dharaj. Sangani, R. Thakker, S. Panchal, Rajesh Gogineni
{"title":"Remote Sensing Pansharpening with TV-H−1 Decomposition and PSO-Based Adaptive Weighting Method","authors":"Dharaj. Sangani, R. Thakker, S. Panchal, Rajesh Gogineni","doi":"10.1142/s021946782450061x","DOIUrl":null,"url":null,"abstract":"In remote sensing, owing to existing sensors’ limitations and the tradeoff between signal-to-noise ratio (SNR) and instantaneous field of view (IFOV), it is difficult to obtain a single image with good spectral and spatial resolution. Pansharpening (PS) is the technique for sharpening multispectral (MS) images by extracting structural and edge information of panchromatic (PAN) image. Multiscale decomposition methods are used for decomposing image in sub-bands but are affected by ringing artifacts, therefore the resultant image seems to be blurred and misregistered. The proposed method overcomes this drawback by decomposing PAN and four band MS image into cartoon and texture components with total variation (TV) Hilbert[Formula: see text] model. The particle swarm optimization (PSO) algorithm is used for finding the optimum weight for fusing texture and cartoon details of PAN and MS images. The proposed method is practically validated on both full-scale and reduced-scale. Robustness of our proposed approach is tested on different geographical areas such as hilly, urban, and vegetation areas. From the visual analysis and qualitative parameters, the proposed method is proved effective compared with other traditional approaches.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021946782450061x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In remote sensing, owing to existing sensors’ limitations and the tradeoff between signal-to-noise ratio (SNR) and instantaneous field of view (IFOV), it is difficult to obtain a single image with good spectral and spatial resolution. Pansharpening (PS) is the technique for sharpening multispectral (MS) images by extracting structural and edge information of panchromatic (PAN) image. Multiscale decomposition methods are used for decomposing image in sub-bands but are affected by ringing artifacts, therefore the resultant image seems to be blurred and misregistered. The proposed method overcomes this drawback by decomposing PAN and four band MS image into cartoon and texture components with total variation (TV) Hilbert[Formula: see text] model. The particle swarm optimization (PSO) algorithm is used for finding the optimum weight for fusing texture and cartoon details of PAN and MS images. The proposed method is practically validated on both full-scale and reduced-scale. Robustness of our proposed approach is tested on different geographical areas such as hilly, urban, and vegetation areas. From the visual analysis and qualitative parameters, the proposed method is proved effective compared with other traditional approaches.