Tezer Yelkenci, Birce Dobrucalı Yelkenci, G. Vardar, Berna Aydoğan
{"title":"Exploring the relationship between digital trails of social signals and bitcoin returns","authors":"Tezer Yelkenci, Birce Dobrucalı Yelkenci, G. Vardar, Berna Aydoğan","doi":"10.1108/sef-12-2022-0572","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to empirically investigate the linkages between digital trails of social signals (content and profile features of bitcoin-related tweets) and bitcoin price return using a VAR-BEKK-GARCH model.\n\n\nDesign/methodology/approach\nBitcoin-related tweets were collected every hour for six months from September 1, 2020, to February 29, 2021. The analysis involved two steps: first, examining tweet content, profiles, sentiment and emotions; and second, investigating the relationship between social signal volatility and hourly bitcoin price return.\n\n\nFindings\nResults indicate that bitcoin price changes can impact the sentiment expressed in tweets about bitcoin, and vice versa. While sadness exhibits a bidirectional volatility spillover with bitcoin, fear and anger display a one-period lag. Quartile analyses reveal that only fear in the second quartile shows a bidirectional spillover effect with bitcoin, while all other emotions except sadness demonstrate a unidirectional spillover effect in all remaining quartiles.\n\n\nOriginality/value\nThe study uses a novel two-step approach to analyze volatility spillovers between social signals and bitcoin price returns. Findings can guide investors and portfolio managers in making better allocation decisions and assist policymakers and regulators in reducing the adverse effects of bitcoin’s volatility on financial system stability.\n","PeriodicalId":45607,"journal":{"name":"Studies in Economics and Finance","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sef-12-2022-0572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to empirically investigate the linkages between digital trails of social signals (content and profile features of bitcoin-related tweets) and bitcoin price return using a VAR-BEKK-GARCH model.
Design/methodology/approach
Bitcoin-related tweets were collected every hour for six months from September 1, 2020, to February 29, 2021. The analysis involved two steps: first, examining tweet content, profiles, sentiment and emotions; and second, investigating the relationship between social signal volatility and hourly bitcoin price return.
Findings
Results indicate that bitcoin price changes can impact the sentiment expressed in tweets about bitcoin, and vice versa. While sadness exhibits a bidirectional volatility spillover with bitcoin, fear and anger display a one-period lag. Quartile analyses reveal that only fear in the second quartile shows a bidirectional spillover effect with bitcoin, while all other emotions except sadness demonstrate a unidirectional spillover effect in all remaining quartiles.
Originality/value
The study uses a novel two-step approach to analyze volatility spillovers between social signals and bitcoin price returns. Findings can guide investors and portfolio managers in making better allocation decisions and assist policymakers and regulators in reducing the adverse effects of bitcoin’s volatility on financial system stability.
期刊介绍:
Topics addressed in the journal include: ■corporate finance, ■financial markets, ■money and banking, ■international finance and economics, ■investments, ■risk management, ■theory of the firm, ■competition policy, ■corporate governance.