Random sampling and probabilistic consensus for identifying outliers in road surface datasets

Q4 Engineering
Savio Pereira, J. Ferris
{"title":"Random sampling and probabilistic consensus for identifying outliers in road surface datasets","authors":"Savio Pereira, J. Ferris","doi":"10.1504/ijvsmt.2020.10034036","DOIUrl":null,"url":null,"abstract":"Road surface measurement plays a crucial role in the modelling and simulation of vehicles as the road surface is one of the primary means of excitation. A prevalent technique for measuring road surfaces utilises scanning lasers whose measurements produce a non-uniform, 3-dimensional point cloud representation, in which statistical outliers typically manifest. In this work, a novel, axiomatic, probabilistic method for simultaneously identifying outliers and estimating the road surface height at uniformly spaced grid nodes is developed. The method expands on the concepts used in the seminal model fitting algorithm, random sampling and consensus (RANSAC), to address a situation in which multiple underlying models may exist in a neighbourhood of the data. The proposed method, called random sampling and probabilistic consensus (RSPC), is evaluated on a 2-dimensional simulated road surface dataset containing 60% outliers in order to demonstrate its effectiveness at identifying outliers and simultaneously estimating grid node heights.","PeriodicalId":35145,"journal":{"name":"International Journal of Vehicle Systems Modelling and Testing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Systems Modelling and Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvsmt.2020.10034036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Road surface measurement plays a crucial role in the modelling and simulation of vehicles as the road surface is one of the primary means of excitation. A prevalent technique for measuring road surfaces utilises scanning lasers whose measurements produce a non-uniform, 3-dimensional point cloud representation, in which statistical outliers typically manifest. In this work, a novel, axiomatic, probabilistic method for simultaneously identifying outliers and estimating the road surface height at uniformly spaced grid nodes is developed. The method expands on the concepts used in the seminal model fitting algorithm, random sampling and consensus (RANSAC), to address a situation in which multiple underlying models may exist in a neighbourhood of the data. The proposed method, called random sampling and probabilistic consensus (RSPC), is evaluated on a 2-dimensional simulated road surface dataset containing 60% outliers in order to demonstrate its effectiveness at identifying outliers and simultaneously estimating grid node heights.
路面数据集异常值识别的随机抽样和概率一致性
路面测量在车辆建模和仿真中起着至关重要的作用,因为路面是激励的主要手段之一。测量路面的一种流行技术是利用扫描激光,其测量结果产生非均匀的三维点云表示,其中通常显示统计异常值。在这项工作中,开发了一种新的,公理化的概率方法,用于同时识别异常值并估计均匀间隔网格节点的路面高度。该方法扩展了开创性模型拟合算法中使用的概念,随机抽样和共识(RANSAC),以解决多个潜在模型可能存在于数据邻域中的情况。该方法被称为随机抽样和概率一致性(RSPC),在包含60%异常值的二维模拟路面数据集上进行了评估,以证明其在识别异常值和同时估计网格节点高度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
3
期刊介绍: IJVSMT provides a resource of information for the scientific and engineering community working with ground vehicles. Emphases are placed on novel computational and testing techniques that are used by automotive engineers and scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信