A generalization of Ascoli–Arzelá theorem in Cn with application in the existence of a solution for a class of higher-order boundary value problem

Q2 Mathematics
Salah Benhiouna, A. Bellour, Rachida Amiar
{"title":"A generalization of Ascoli–Arzelá theorem in Cn with application in the existence of a solution for a class of higher-order boundary value problem","authors":"Salah Benhiouna, A. Bellour, Rachida Amiar","doi":"10.1108/ajms-10-2021-0274","DOIUrl":null,"url":null,"abstract":"PurposeA generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’ results are obtained under, rather, general assumptions.Design/methodology/approachFirst, a generalization of Ascoli–Arzelá theorem in Banach spaces in Cn is established. Second, this new generalization with Schauder's fixed point theorem to prove the existence of a solution for a boundary value problem of higher order is used. Finally, an illustrated example is given.FindingsThere is no funding.Originality/valueIn this work, a new generalization of Ascoli–Arzelá theorem in Banach spaces in Cn is established. To the best of the authors’ knowledge, Ascoli–Arzelá theorem is given only in Banach spaces of continuous functions. In the second part, this new generalization with Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order, where the derivatives appear in the non-linear terms.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-10-2021-0274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeA generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’ results are obtained under, rather, general assumptions.Design/methodology/approachFirst, a generalization of Ascoli–Arzelá theorem in Banach spaces in Cn is established. Second, this new generalization with Schauder's fixed point theorem to prove the existence of a solution for a boundary value problem of higher order is used. Finally, an illustrated example is given.FindingsThere is no funding.Originality/valueIn this work, a new generalization of Ascoli–Arzelá theorem in Banach spaces in Cn is established. To the best of the authors’ knowledge, Ascoli–Arzelá theorem is given only in Banach spaces of continuous functions. In the second part, this new generalization with Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order, where the derivatives appear in the non-linear terms.
Cn中ascoli - arzel定理的推广及其在一类高阶边值问题解存在性中的应用
目的建立了Banach空间中Ascoli–Arzelá定理的推广。用Schauder不动点定理证明了一个高阶边值问题解的存在性。作者的结果是在一般假设下得出的。设计/方法论/方法首先,建立了Cn中Banach空间中Ascoli–Arzelá定理的推广。其次,利用Schauder不动点定理的新推广,证明了高阶边值问题解的存在性。最后,给出了一个实例。发现没有资金。在这项工作中,建立了Cn中Banach空间中Ascoli–Arzelá定理的一个新的推广。据作者所知,Ascoli–Arzelá定理仅在连续函数的Banach空间中给出。在第二部分中,利用Schauder不动点定理的这一新推广,证明了一个高阶边值问题解的存在性,其中导数出现在非线性项中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信