Swirler geometry effects (dh/do ratio) on synthetic gas flames. Part 2: dynamic flame behaviour at external y altered acoustic conditions

Q3 Earth and Planetary Sciences
Harun Yilmaz, Omer Cam, I. Yilmaz
{"title":"Swirler geometry effects (dh/do ratio) on synthetic gas flames. Part 2: dynamic flame behaviour at external y altered acoustic conditions","authors":"Harun Yilmaz, Omer Cam, I. Yilmaz","doi":"10.6001/energetika.v67i1.4536","DOIUrl":null,"url":null,"abstract":"In a combustion device, unsteady heat release causes acoustic energy to increase when acoustic damping (energy loss) is not that effective, and, as a result, thermo-acoustic flame instabilities occur. In this study, effects of the swirler dh/do ratio (at different swirl numbers) on dynamic flame behaviour of the premixed 20%CNG/30%H2/30%CO/20%CO2 mixture under externally altered acoustic boundary conditions and stability limits (flashback and blowout equivalence ratios) of such mixture were investigated in a laboratory-scale variable geometric swirl number combustor. Therefore, swirl generators with different dh/do ratios (0.3 and 0.5) and geometric swirl numbers (0.4, 0.6, 0.8, 1.0 1.2 and 1.4) were designed and manufactured. Acoustic boundary conditions in the combustion chamber were altered using loudspeakers, and flame response to these conditions was perceived using photodiodes and pressure sensors. Dynamic flame behaviour of respective mixture was evaluated using luminous intensity and pressure profiles. Results showed that the dh/do ratio has a minor impact on dynamic flame behaviour.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/energetika.v67i1.4536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In a combustion device, unsteady heat release causes acoustic energy to increase when acoustic damping (energy loss) is not that effective, and, as a result, thermo-acoustic flame instabilities occur. In this study, effects of the swirler dh/do ratio (at different swirl numbers) on dynamic flame behaviour of the premixed 20%CNG/30%H2/30%CO/20%CO2 mixture under externally altered acoustic boundary conditions and stability limits (flashback and blowout equivalence ratios) of such mixture were investigated in a laboratory-scale variable geometric swirl number combustor. Therefore, swirl generators with different dh/do ratios (0.3 and 0.5) and geometric swirl numbers (0.4, 0.6, 0.8, 1.0 1.2 and 1.4) were designed and manufactured. Acoustic boundary conditions in the combustion chamber were altered using loudspeakers, and flame response to these conditions was perceived using photodiodes and pressure sensors. Dynamic flame behaviour of respective mixture was evaluated using luminous intensity and pressure profiles. Results showed that the dh/do ratio has a minor impact on dynamic flame behaviour.
旋流器几何效应(dh/do比)对合成气体火焰的影响。第2部分:外部改变声学条件下的动态火焰特性
在燃烧装置中,当声阻尼(能量损失)不够有效时,非定常热释放会导致声能增加,从而导致热声火焰不稳定。在实验室规模的可变几何旋流数燃烧室中,研究了旋流器dh/do比(不同旋流数)对外变声学边界条件下20%CNG/30%H2/30%CO/20%CO2预混混合物动态火焰行为的影响,以及该混合物的稳定性极限(闪回和爆轰等效比)。为此,设计制造了不同dh/do比(0.3和0.5)和几何旋流数(0.4、0.6、0.8、1.0、1.2和1.4)的旋流发生器。使用扬声器改变燃烧室中的声学边界条件,并使用光电二极管和压力传感器感知这些条件下的火焰响应。利用发光强度和压力分布对各自混合物的动态火焰特性进行了评价。结果表明,dh/do比对火焰动态特性影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energetika
Energetika Energy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍: The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimi­zation, target systems, environmental impacts of power engi­neering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metro­logy, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are re­viewed. Information is presented on the defended theses, vari­ous conferences, reviews, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信