On Hermitian Eisenstein series of degree $2$

IF 0.5 Q3 MATHEMATICS
Adrian Hauffe-Waschbusch, A. Krieg, Brandon Williams
{"title":"On Hermitian Eisenstein series of degree $2$","authors":"Adrian Hauffe-Waschbusch, A. Krieg, Brandon Williams","doi":"10.7169/facm/2047","DOIUrl":null,"url":null,"abstract":"We consider the Hermitian Eisenstein series $E^{(\\mathbb{K})}_k$ of degree $2$ and weight $k$ associated with an imaginary-quadratic number field $\\mathbb{K}$ and determine the influence of $\\mathbb{K}$ on the arithmetic and the growth of its Fourier coefficients. We find that they satisfy the identity $E^{{(\\mathbb{K})}^2}_4 = E^{{(\\mathbb{K})}}_8$, which is well-known for Siegel modular forms of degree $2$, if and only if $\\mathbb{K} = \\mathbb{Q} (\\sqrt{-3})$. As an application, we show that the Eisenstein series $E^{(\\mathbb{K})}_k$, $k=4,6,8,10,12$ are algebraically independent whenever $\\mathbb{K}\\neq \\mathbb{Q}(\\sqrt{-3})$. The difference between the Siegel and the restriction of the Hermitian to the Siegel half-space is a cusp form in the Maass space that does not vanish identically for sufficiently large weight; however, when the weight is fixed, we will see that it tends to $0$ as the discriminant tends to $-\\infty$. Finally, we show that these forms generate the space of cusp forms in the Maass Spezialschar as a module over the Hecke algebra as $\\mathbb{K}$ varies over imaginary-quadratic number fields.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the Hermitian Eisenstein series $E^{(\mathbb{K})}_k$ of degree $2$ and weight $k$ associated with an imaginary-quadratic number field $\mathbb{K}$ and determine the influence of $\mathbb{K}$ on the arithmetic and the growth of its Fourier coefficients. We find that they satisfy the identity $E^{{(\mathbb{K})}^2}_4 = E^{{(\mathbb{K})}}_8$, which is well-known for Siegel modular forms of degree $2$, if and only if $\mathbb{K} = \mathbb{Q} (\sqrt{-3})$. As an application, we show that the Eisenstein series $E^{(\mathbb{K})}_k$, $k=4,6,8,10,12$ are algebraically independent whenever $\mathbb{K}\neq \mathbb{Q}(\sqrt{-3})$. The difference between the Siegel and the restriction of the Hermitian to the Siegel half-space is a cusp form in the Maass space that does not vanish identically for sufficiently large weight; however, when the weight is fixed, we will see that it tends to $0$ as the discriminant tends to $-\infty$. Finally, we show that these forms generate the space of cusp forms in the Maass Spezialschar as a module over the Hecke algebra as $\mathbb{K}$ varies over imaginary-quadratic number fields.
关于2次的厄米爱森斯坦级数
我们考虑了与虚二次数域$\mathbb{K}$相关的阶为$2$、权重为$K$的Hermitian-Essenstein级数$E^{(\mathbb{K})}_K$,并确定了$\mathbb{K}$对算术及其傅立叶系数增长的影响。我们发现它们满足恒等式$E^{{(\mathbb{K})}^2}_4=E^{{(\math bb{K})}_8$,这对于度为$2$的Siegel模形式是众所周知的,当且仅当$\mathbb{K}=\mathbb}Q}(\sqrt{-3})$。作为一个应用,我们证明了每当$\mathbb{K}\neq\mathbb{Q}(\sqrt{-3})$时,Eisenstein级数$E^{(\mathbb}K)}_K$,$K=4,6,8,10,12$是代数独立的。Siegel和Hermitian对Siegel半空间的限制之间的区别是Maas空间中的尖点形式,对于足够大的权重,该尖点形式不会完全消失;然而,当权重固定时,我们会看到它倾向于$0$,因为判别式倾向于$-\infty$。最后,我们证明了当$\mathbb{K}$在虚二次数域上变化时,这些形式在作为Hecke代数上的模的Maas-Spezialschar中生成尖点形式的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信