Metal Chelators as Anticancer Approach: Part I; Novel 7-Anisidine Derivatives with Multidentate at 7-8 Carbons of Fluoroquinolone Scaffold as Potential Chelator Anticancer and Antilipolytic Candidates
Y. Al-Hiari, Shereen Arabiyat, V. Kasabri, I. Hamdan, I. Almasri, M. Yasin, Dalya Al-Saad
{"title":"Metal Chelators as Anticancer Approach: Part I; Novel 7-Anisidine Derivatives with Multidentate at 7-8 Carbons of Fluoroquinolone Scaffold as Potential Chelator Anticancer and Antilipolytic Candidates","authors":"Y. Al-Hiari, Shereen Arabiyat, V. Kasabri, I. Hamdan, I. Almasri, M. Yasin, Dalya Al-Saad","doi":"10.35516/jjps.v16i2.1467","DOIUrl":null,"url":null,"abstract":"Background: Cancer is one of the greatest troubling maladies currently. It is believed that it is the second reason for death following cardiovascular maladies. Owing to the multiplicity of its types, stages and genetic basis, there is no existing drug to cure all types of cancer. Resistance to present drugs and severe adverse effects are other challenges in the struggle against cancer. In such pursuit, fluoroquinolones (FQs) have the potential as antiproliferative compounds due to safety, low cost, and absence of resistance. \nAims: In this study, we aim to synthesize biologically active compounds that have dual anticancer and anti-lipase potential. Sixteen compounds were prepared, fully characterized, and studied through identification of IC50 values against the highly susceptible cancer cell lines. \nMethods: In this work we are concerned with synthesizing biologically active compounds that belong to fluoroquinolones (FQs) with dual anti-colorectal cancer and anti-lipase activity, owing to association between cancer and obesity, conduct titration and docking experiments to validate our hypothesis. \nResults: In vitro findings indicated that these compounds demonstrated promising anticancer activity against tested cell lines in micromolar range with a potency comparable to cisplatin. Compound 11 exhibited approximately doubled potency compared to cisplatin against SW620 colorectal cancer cell line with IC50 3.2 μM which proposes FQs as potent antiproliferative agents. The synthesized Fluoroquinolone (FQ) compounds were further screened for their in vitro anti-lipase potential. The findings demonstrated that all the screened compounds have demonstrated remarkable anti-lipase activity, as compared to control molecule orlistat. Compound 9 exhibited comparable activity to orlistat against pancreatic lipase with IC50 0.4 μM which proposes FQs as potent pancreatic lipase inhibitors. \nConclusions: The anticancer potential of these derivatives is referred to their ability to inhibit Topo II which indicates that chelation is the mechanism of inhibition of Topo II emphasized with titration and docking experiments.","PeriodicalId":14719,"journal":{"name":"Jordan Journal of Pharmaceutical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35516/jjps.v16i2.1467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cancer is one of the greatest troubling maladies currently. It is believed that it is the second reason for death following cardiovascular maladies. Owing to the multiplicity of its types, stages and genetic basis, there is no existing drug to cure all types of cancer. Resistance to present drugs and severe adverse effects are other challenges in the struggle against cancer. In such pursuit, fluoroquinolones (FQs) have the potential as antiproliferative compounds due to safety, low cost, and absence of resistance.
Aims: In this study, we aim to synthesize biologically active compounds that have dual anticancer and anti-lipase potential. Sixteen compounds were prepared, fully characterized, and studied through identification of IC50 values against the highly susceptible cancer cell lines.
Methods: In this work we are concerned with synthesizing biologically active compounds that belong to fluoroquinolones (FQs) with dual anti-colorectal cancer and anti-lipase activity, owing to association between cancer and obesity, conduct titration and docking experiments to validate our hypothesis.
Results: In vitro findings indicated that these compounds demonstrated promising anticancer activity against tested cell lines in micromolar range with a potency comparable to cisplatin. Compound 11 exhibited approximately doubled potency compared to cisplatin against SW620 colorectal cancer cell line with IC50 3.2 μM which proposes FQs as potent antiproliferative agents. The synthesized Fluoroquinolone (FQ) compounds were further screened for their in vitro anti-lipase potential. The findings demonstrated that all the screened compounds have demonstrated remarkable anti-lipase activity, as compared to control molecule orlistat. Compound 9 exhibited comparable activity to orlistat against pancreatic lipase with IC50 0.4 μM which proposes FQs as potent pancreatic lipase inhibitors.
Conclusions: The anticancer potential of these derivatives is referred to their ability to inhibit Topo II which indicates that chelation is the mechanism of inhibition of Topo II emphasized with titration and docking experiments.
期刊介绍:
The Jordan Journal of Pharmaceutical Sciences (JJPS) is a scientific, bi-annual, peer-reviewed publication that will focus on current topics of interest to the pharmaceutical community at large. Although the JJPS is intended to be of interest to pharmaceutical scientists, other healthy workers, and manufacturing processors will also find it most interesting and informative. Papers will cover basic pharmaceutical and applied research, scientific commentaries, as well as views, reviews. Topics on products will include manufacturing process, quality control, pharmaceutical engineering, pharmaceutical technology, and philosophies on all aspects of pharmaceutical sciences. The editorial advisory board would like to place an emphasis on new and innovative methods, technologies, and techniques for the pharmaceutical industry. The reader will find a broad range of important topics in this first issue.