Event-triggered control for trajectory tracking of quadrotor unmanned aerial vehicle

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS
Peiyun Ye, Yang Yu, Wei Wang
{"title":"Event-triggered control for trajectory tracking of quadrotor unmanned aerial vehicle","authors":"Peiyun Ye, Yang Yu, Wei Wang","doi":"10.1080/21642583.2021.1975321","DOIUrl":null,"url":null,"abstract":"This paper studies the trajectory tracking problem of quadrotor unmanned aerial vehicle (QUAV) with model nonlinearities and external disturbances via event-triggered control technique. Dividing the QUAV system into position subsystem and attitude subsystem, an adaptive fuzzy control algorithm is designed in position subsystem to provide desired pitch and roll angles for the attitude subsystem. Then, by constructing an event-triggered mechanism, an event-triggered adaptive fuzzy control algorithm is presented in the attitude subsystem, where the control law and the fuzzy parameter adaptive law are updated in an aperiodic form. Based on Lyapunov stability theory, it is proved that all signals in the closed-loop system are uniformly ultimately bounded via the impulsive dynamical system tool, and the tracking errors converge to a small neighbourhood of the origin. Besides, it is proved that there is a positive lower bound between the intersample time to avoid Zeno behaviour. Finally, simulation results illustrate that the proposed control scheme can guarantee the trajectory tracking performance of the QUAV system, while it can reduce the update frequency of the controller and improve the resource utilization.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2021.1975321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies the trajectory tracking problem of quadrotor unmanned aerial vehicle (QUAV) with model nonlinearities and external disturbances via event-triggered control technique. Dividing the QUAV system into position subsystem and attitude subsystem, an adaptive fuzzy control algorithm is designed in position subsystem to provide desired pitch and roll angles for the attitude subsystem. Then, by constructing an event-triggered mechanism, an event-triggered adaptive fuzzy control algorithm is presented in the attitude subsystem, where the control law and the fuzzy parameter adaptive law are updated in an aperiodic form. Based on Lyapunov stability theory, it is proved that all signals in the closed-loop system are uniformly ultimately bounded via the impulsive dynamical system tool, and the tracking errors converge to a small neighbourhood of the origin. Besides, it is proved that there is a positive lower bound between the intersample time to avoid Zeno behaviour. Finally, simulation results illustrate that the proposed control scheme can guarantee the trajectory tracking performance of the QUAV system, while it can reduce the update frequency of the controller and improve the resource utilization.
四旋翼无人机轨迹跟踪的事件触发控制
本文采用事件触发控制技术研究了具有模型非线性和外部扰动的四旋翼无人机轨迹跟踪问题。将QUAV系统分为位置子系统和姿态子系统,在位置子系统中设计了一种自适应模糊控制算法,为姿态子系统提供所需的俯仰角和滚转角。然后,通过构造事件触发机制,在姿态子系统中提出了一种事件触发自适应模糊控制算法,其中控制律和模糊参数自适应律以非周期形式更新,利用脉冲动力系统工具证明了闭环系统中的所有信号最终都是一致有界的,并且跟踪误差收敛到原点的一个小邻域。此外,还证明了避免Zeno行为的样本间时间之间存在正下界。最后,仿真结果表明,所提出的控制方案可以保证QUAV系统的轨迹跟踪性能,同时可以降低控制器的更新频率,提高资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信