Roots and Dynamics of Octonion Polynomials

Q3 Mathematics
Adam Chapman, S. Vishkautsan
{"title":"Roots and Dynamics of Octonion Polynomials","authors":"Adam Chapman, S. Vishkautsan","doi":"10.46298/cm.9042","DOIUrl":null,"url":null,"abstract":"This paper is devoted to several new results concerning (standard) octonion\npolynomials. The first is the determination of the roots of all right scalar\nmultiples of octonion polynomials. The roots of left multiples are also\ndiscussed, especially over fields of characteristic not 2. We then turn to\nstudy the dynamics of monic quadratic real octonion polynomials, classifying\nthe fixed points into attracting, repelling and ambivalent, and concluding with\na discussion on the behavior of pseudo-periodic points.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.9042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is devoted to several new results concerning (standard) octonion polynomials. The first is the determination of the roots of all right scalar multiples of octonion polynomials. The roots of left multiples are also discussed, especially over fields of characteristic not 2. We then turn to study the dynamics of monic quadratic real octonion polynomials, classifying the fixed points into attracting, repelling and ambivalent, and concluding with a discussion on the behavior of pseudo-periodic points.
八元多项式的根与动力学
本文讨论了有关(标准)八元多项式的几个新结果。第一个是确定所有八元多项式的标量倍数的根。还讨论了左倍数的根,特别是在特征为非2的域上。然后,我们研究了一元二次实八元多项式的动力学,将不动点分为吸引点、排斥点和矛盾点,最后讨论了伪周期点的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信