Nova Rijati, Diana Purwitasar, S. Sumpeno, M. Purnomo
{"title":"A Rule-Generation Model for Class Imbalances to Detect Student Entrepreneurship Based on the Theory of Planned Behavior","authors":"Nova Rijati, Diana Purwitasar, S. Sumpeno, M. Purnomo","doi":"10.2478/cait-2022-0023","DOIUrl":null,"url":null,"abstract":"Abstract The ability to identify the entrepreneurial potential of students enables higher education institutions to contribute to the economic and social development of a country. Current research trends regarding the detection of student entrepreneurial potential have the greatest challenge in the unequal ratio of datasets. This study proposes a rule-generation model in an imbalanced situation to classify student entrepreneurship based on the Theory of Planned Behavior (TPB). The result is a ruleset that is used for the early detection of student entrepreneurial potential. The proposed method consists of three main stages, namely preprocessing data to classify data based on TPB variables, generating a dataset by clustering and selecting attributes by sampling to balance the data, and finally generating a ruleset. Furthermore, the results of the detecting ruleset have been evaluated with actual data from the student tracer study as ground truth. The evaluation results show high accuracy so that the ruleset can be applied to the higher education environment in the future.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The ability to identify the entrepreneurial potential of students enables higher education institutions to contribute to the economic and social development of a country. Current research trends regarding the detection of student entrepreneurial potential have the greatest challenge in the unequal ratio of datasets. This study proposes a rule-generation model in an imbalanced situation to classify student entrepreneurship based on the Theory of Planned Behavior (TPB). The result is a ruleset that is used for the early detection of student entrepreneurial potential. The proposed method consists of three main stages, namely preprocessing data to classify data based on TPB variables, generating a dataset by clustering and selecting attributes by sampling to balance the data, and finally generating a ruleset. Furthermore, the results of the detecting ruleset have been evaluated with actual data from the student tracer study as ground truth. The evaluation results show high accuracy so that the ruleset can be applied to the higher education environment in the future.