Anil N. Hirani , Kaushik Kalyanaraman , Han Wang , Seth Watts
{"title":"Computing discrete harmonic differential forms in a given cohomology class using finite element exterior calculus","authors":"Anil N. Hirani , Kaushik Kalyanaraman , Han Wang , Seth Watts","doi":"10.1016/j.comgeo.2022.101937","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Computational topology research of the past two decades has emphasized combinatorial techniques while numerical methods such as numerical linear algebra remain underutilized. While the combinatorial techniques have been very successful in diverse areas, for some applications, it is worth considering the numerical counterparts. We discuss one such application. </span>Harmonic forms<span><span> are elements of the kernel of the Hodge Laplacian operator and contain information about the topology of the manifold. If a particular </span>cohomology class<span> is chosen, the closed differential form with the smallest norm in that class is a harmonic form. We use these well-known facts to give an algorithm for solving the following problem: given a piecewise flat manifold simplicial complex (with or without boundary) and a closed </span></span></span>piecewise polynomial<span><span><span> differential form representing a cohomology class, find the discrete harmonic form in that cohomology class. We give a least squares<span> based algorithm to solve this problem and show that the computed form satisfies the finite element exterior calculus (FEEC) equations for being a harmonic form. The piecewise polynomial spaces used are the spaces of trimmed </span></span>polynomial forms, that is, arbitrary </span>degree polynomial generalizations of Whitney forms which are used in FEEC. We also survey other methods for finding harmonic forms.</span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000803","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Computational topology research of the past two decades has emphasized combinatorial techniques while numerical methods such as numerical linear algebra remain underutilized. While the combinatorial techniques have been very successful in diverse areas, for some applications, it is worth considering the numerical counterparts. We discuss one such application. Harmonic forms are elements of the kernel of the Hodge Laplacian operator and contain information about the topology of the manifold. If a particular cohomology class is chosen, the closed differential form with the smallest norm in that class is a harmonic form. We use these well-known facts to give an algorithm for solving the following problem: given a piecewise flat manifold simplicial complex (with or without boundary) and a closed piecewise polynomial differential form representing a cohomology class, find the discrete harmonic form in that cohomology class. We give a least squares based algorithm to solve this problem and show that the computed form satisfies the finite element exterior calculus (FEEC) equations for being a harmonic form. The piecewise polynomial spaces used are the spaces of trimmed polynomial forms, that is, arbitrary degree polynomial generalizations of Whitney forms which are used in FEEC. We also survey other methods for finding harmonic forms.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.