Representations of orientifold Khovanov–Lauda–Rouquier algebras and the Enomoto–Kashiwara algebra

Pub Date : 2021-10-04 DOI:10.2140/pjm.2023.322.407
T. Przeździecki
{"title":"Representations of orientifold\nKhovanov–Lauda–Rouquier algebras and the Enomoto–Kashiwara algebra","authors":"T. Przeździecki","doi":"10.2140/pjm.2023.322.407","DOIUrl":null,"url":null,"abstract":"We consider an\"orientifold\"generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pairs, and, via a categorification theorem, to highest weight modules over an algebra introduced by Enomoto and Kashiwara. Our first main result is a new shuffle realization of these highest weight modules and a combinatorial construction of their PBW and canonical bases in terms of Lyndon words. Our second main result is a classification of irreducible representations of orientifold KLR algebras and a computation of their global dimension in the case when the framing is trivial.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider an"orientifold"generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pairs, and, via a categorification theorem, to highest weight modules over an algebra introduced by Enomoto and Kashiwara. Our first main result is a new shuffle realization of these highest weight modules and a combinatorial construction of their PBW and canonical bases in terms of Lyndon words. Our second main result is a classification of irreducible representations of orientifold KLR algebras and a computation of their global dimension in the case when the framing is trivial.
分享
查看原文
OrientalifoldKhovanov–Lauda–Rouquier代数和Enomoto–Kashiwara代数的表示
我们考虑了Khovanov-Lauda-Rouquier代数的“方向性”推广,它依赖于一个有对合和分幅的颤振。通过Schur-Weyl对偶型泛子,他们的表示理论与Kac-Moody量子对称对有关,并通过分类定理与Enomoto和Kashiwara引入的代数上的最高权模有关。我们的第一个主要结果是对这些权重最高的模块进行了新的洗牌实现,并根据Lyndon词组合构建了它们的PBW和规范基。我们的第二个主要结果是对东方可折KLR代数的不可约表示进行了分类,并计算了它们在框架平凡情况下的整体维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信