A Three-dimensional High-order Numerical Model for the Simulation of the Interaction Between Waves and an Emerged Barrier

Q3 Engineering
F. Gallerano, F. Palleschi, Benedetta Iele, G. Cannata
{"title":"A Three-dimensional High-order Numerical Model for the Simulation of the Interaction Between Waves and an Emerged Barrier","authors":"F. Gallerano, F. Palleschi, Benedetta Iele, G. Cannata","doi":"10.37394/232013.2022.17.13","DOIUrl":null,"url":null,"abstract":"We present a new three-dimensional numerical model for the simulation of breaking waves. In the proposed model, the integral contravariant form of the Navier-Stokes equations is expressed in a curvilinear moving coordinate system and are integrated by a predictor-corrector method. In the predictor step of the method, the equations of motion are discretized by a shock-capturing scheme that is based on an original highorder scheme for the reconstruction of the point values of the conserved variables on the faces of the computational grid. On the cell faces, the updating of the point values of the conserved variables is carried out by an exact Riemann solver. The final flow velocity field is obtained by a corrector step which is based exclusively on conserved variables, without the need of calculating an intermediate field of primitive variables. The new three-dimensional model significantly reduces the kinetic energy numerical dissipation introduced by the scheme. The proposed model is validated against experimental tests of breaking waves and is applied to the three-dimensional simulation of the local vortices produced by the interaction between the wave motion and an emerged barrier.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new three-dimensional numerical model for the simulation of breaking waves. In the proposed model, the integral contravariant form of the Navier-Stokes equations is expressed in a curvilinear moving coordinate system and are integrated by a predictor-corrector method. In the predictor step of the method, the equations of motion are discretized by a shock-capturing scheme that is based on an original highorder scheme for the reconstruction of the point values of the conserved variables on the faces of the computational grid. On the cell faces, the updating of the point values of the conserved variables is carried out by an exact Riemann solver. The final flow velocity field is obtained by a corrector step which is based exclusively on conserved variables, without the need of calculating an intermediate field of primitive variables. The new three-dimensional model significantly reduces the kinetic energy numerical dissipation introduced by the scheme. The proposed model is validated against experimental tests of breaking waves and is applied to the three-dimensional simulation of the local vortices produced by the interaction between the wave motion and an emerged barrier.
波浪与出射屏障相互作用的三维高阶数值模拟
本文提出了一种新的三维破碎波数值模拟模型。在该模型中,Navier-Stokes方程的积分逆变形式在曲线运动坐标系中表示,并通过预测校正方法进行积分。在该方法的预测步骤中,采用基于原始高阶格式的冲击捕获格式对运动方程进行离散化,该格式用于重建计算网格上守恒变量的点值。在单元面上,守恒变量的点值更新由精确黎曼解算器完成。最终流速场由完全基于保守变量的修正步得到,无需计算原始变量的中间场。新的三维模型显著降低了该方案引入的动能数值耗散。通过破碎波实验验证了该模型的有效性,并将其应用于波浪运动与出现障壁相互作用产生的局部涡旋的三维模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信