{"title":"Linear and Nonlinear Digital Filters: From the Analog and Beyond","authors":"Victor Lazzarini;Joseph Timoney","doi":"10.1162/comj_a_00599","DOIUrl":null,"url":null,"abstract":"Abstract A common approach in the development of digital filters is to begin with an existing analog filter and produce an equivalent computer program to realize it. This may involve, at the extreme, the detailed analysis of circuit behavior, or it may stem from a higher-level approach that looks at block diagrams and s-domain transfer functions. In this article, we first take the latter approach to develop a set of linear filters from the well-known state variable filter. From this we obtain a first result, which is a linear digital implementation of the Steiner design, comprising separate inputs for different frequency responses and a single output summing the responses. Turning back to the state variable design, we show that to develop a nonlinear version, an analog circuit realization can be used to identify positions in which to insert nonlinear waveshapers. This gives us our second result, a nonlinear digital state variable filter. From this analog-derived design, we then propose modifications that go beyond the original filter, developing as a final result a structure that could be classed as a hybrid of filter and digital waveshaper. As part of this process, we ask the question of whether an approach that takes inspiration from the analog world, while being decoupled from it, may be more profitable in the long run than an obsession with detailed circuit modeling.","PeriodicalId":50639,"journal":{"name":"Computer Music Journal","volume":"45 2","pages":"67-83"},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Music Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9931092/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract A common approach in the development of digital filters is to begin with an existing analog filter and produce an equivalent computer program to realize it. This may involve, at the extreme, the detailed analysis of circuit behavior, or it may stem from a higher-level approach that looks at block diagrams and s-domain transfer functions. In this article, we first take the latter approach to develop a set of linear filters from the well-known state variable filter. From this we obtain a first result, which is a linear digital implementation of the Steiner design, comprising separate inputs for different frequency responses and a single output summing the responses. Turning back to the state variable design, we show that to develop a nonlinear version, an analog circuit realization can be used to identify positions in which to insert nonlinear waveshapers. This gives us our second result, a nonlinear digital state variable filter. From this analog-derived design, we then propose modifications that go beyond the original filter, developing as a final result a structure that could be classed as a hybrid of filter and digital waveshaper. As part of this process, we ask the question of whether an approach that takes inspiration from the analog world, while being decoupled from it, may be more profitable in the long run than an obsession with detailed circuit modeling.
期刊介绍:
Computer Music Journal is published quarterly with an annual sound and video anthology containing curated music¹. For four decades, it has been the leading publication about computer music, concentrating fully on digital sound technology and all musical applications of computers. This makes it an essential resource for musicians, composers, scientists, engineers, computer enthusiasts, and anyone exploring the wonders of computer-generated sound.
Edited by experts in the field and featuring an international advisory board of eminent computer musicians, issues typically include:
In-depth articles on cutting-edge research and developments in technology, methods, and aesthetics of computer music
Reports on products of interest, such as new audio and MIDI software and hardware
Interviews with leading composers of computer music
Announcements of and reports on conferences and courses in the United States and abroad
Publication, event, and recording reviews
Tutorials, letters, and editorials
Numerous graphics, photographs, scores, algorithms, and other illustrations.