Sums involving the binomial coefficients, Bernoulli numbers of the second kind and harmonic numbers

IF 0.4 Q4 MATHEMATICS
Necdet Batır, A. Sofo
{"title":"Sums involving the binomial coefficients, Bernoulli numbers of the second kind and harmonic numbers","authors":"Necdet Batır, A. Sofo","doi":"10.7546/nntdm.2023.29.1.78-97","DOIUrl":null,"url":null,"abstract":"We offer a number of various finite and infinite sum identities involving the binomial coefficients, Bernoulli numbers of the second kind and harmonic numbers. For example, among many others, we prove \\[\\displaystyle \\sum_{k=0}^{n}\\frac{(-1)^{k}h_{k}}{4^{k}} {{2k} \\choose {k}}G_{n-k}=\\frac{(-1)^{n-1}}{2^{2n-1}}{{2n-2} \\choose {n-1}}\\] and \\[\\displaystyle \\sum_{k=1}^{\\infty}\\frac{h_{k}}{k^{2}(2k-1)4^{k}} {{2k} \\choose {k}}=2\\pi +3\\zeta(2)\\log 2-3\\zeta(2)-\\frac{7}{2}\\zeta(3),\\] where h_k=H_{2k}-\\dfrac{1}{2}H_{k}, G_k are Bernoulli numbers of the second kind, and \\zeta is the Riemann zeta function. We also give an alternate proof of the series representations for the constants \\log (2 \\pi) and \\gamma given by Blagouchine and Coppo.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.1.78-97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We offer a number of various finite and infinite sum identities involving the binomial coefficients, Bernoulli numbers of the second kind and harmonic numbers. For example, among many others, we prove \[\displaystyle \sum_{k=0}^{n}\frac{(-1)^{k}h_{k}}{4^{k}} {{2k} \choose {k}}G_{n-k}=\frac{(-1)^{n-1}}{2^{2n-1}}{{2n-2} \choose {n-1}}\] and \[\displaystyle \sum_{k=1}^{\infty}\frac{h_{k}}{k^{2}(2k-1)4^{k}} {{2k} \choose {k}}=2\pi +3\zeta(2)\log 2-3\zeta(2)-\frac{7}{2}\zeta(3),\] where h_k=H_{2k}-\dfrac{1}{2}H_{k}, G_k are Bernoulli numbers of the second kind, and \zeta is the Riemann zeta function. We also give an alternate proof of the series representations for the constants \log (2 \pi) and \gamma given by Blagouchine and Coppo.
涉及二项式系数、第二类伯努利数和调和数的和
我们提供了许多不同的有限和无穷和恒等式,包括二项式系数、第二类伯努利数和调和数。例如,在许多其他例子中,我们证明了\[\displaystyle\sum_{k=0}^{n}\frac{(-1)^{k}h_{k} {4^{k}}{2k}\schoose{k}}G_ a(3),\]其中h_k=h_{2k}-\dfrac{1}{2}H_{k} ,G_k是第二类伯努利数,ζ是黎曼ζ函数。我们还给出了Blagouchine和Coppo给出的常数\log(2\pi)和\gamma的级数表示的另一个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信