Ross J. Grant, J. Underhill, Jaume Hernández-Casado, R. Jamieson, R. M. Williams
{"title":"The evolution of the Dowsing Graben System: implications for petroleum prospectivity in the UK Southern North Sea","authors":"Ross J. Grant, J. Underhill, Jaume Hernández-Casado, R. Jamieson, R. M. Williams","doi":"10.1144/petgeo2018-064","DOIUrl":null,"url":null,"abstract":"Upper Permian (Zechstein Supergroup) evaporites have a major control on structural styles and prospectivity in the UK Southern North Sea (SNS). They form the regional super-seal for the main Rotliegend Group (Leman Sandstone Formation) reservoir play fairway immediately beneath. The evaporites have highly variable thicknesses due to the syndepositional basin architecture, differential loading and post-depositional deformation through diapirism and salt withdrawal. The halokinetic activity leads to touchdown (welding) of the supra-salt section onto the sub-salt strata and the development of narrow (up to 15 km-wide) graben systems. The interpretation and depth conversion of well-calibrated, high-quality, 3D post-stack time-migrated (PSTM) seismic data along the southwestern margin of the basin show that a NW–SE-striking elongate extensional Dowsing Graben System transects the area. The graben is defined by a series of large, overlapping, en echelon listric growth faults, with oblique secondary planar faults, which sole-out on two main (deep and shallow) décollement levels in the Zechstein Supergroup and the Middle Triassic Röt Halite Member. Whilst its initial formation was related to Mesozoic extension, the graben system also displays a contractional overprint resulting from regional compression and structural inversion during the Cenozoic. Detailed mapping of the Zechstein Supergroup has revealed that the evolution of the extensional system was influenced by the ESE–WNW-striking anhydrite–carbonate Zechstein shelf-margin. The occurrence of variable-thickness, low-velocity sediments within the graben impacts seismic imaging and depth conversion, leading to prospective structures being overlooked; something that has implications for prospectivity in the SNS and other evaporite basins where similar graben occur.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/petgeo2018-064","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2018-064","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Upper Permian (Zechstein Supergroup) evaporites have a major control on structural styles and prospectivity in the UK Southern North Sea (SNS). They form the regional super-seal for the main Rotliegend Group (Leman Sandstone Formation) reservoir play fairway immediately beneath. The evaporites have highly variable thicknesses due to the syndepositional basin architecture, differential loading and post-depositional deformation through diapirism and salt withdrawal. The halokinetic activity leads to touchdown (welding) of the supra-salt section onto the sub-salt strata and the development of narrow (up to 15 km-wide) graben systems. The interpretation and depth conversion of well-calibrated, high-quality, 3D post-stack time-migrated (PSTM) seismic data along the southwestern margin of the basin show that a NW–SE-striking elongate extensional Dowsing Graben System transects the area. The graben is defined by a series of large, overlapping, en echelon listric growth faults, with oblique secondary planar faults, which sole-out on two main (deep and shallow) décollement levels in the Zechstein Supergroup and the Middle Triassic Röt Halite Member. Whilst its initial formation was related to Mesozoic extension, the graben system also displays a contractional overprint resulting from regional compression and structural inversion during the Cenozoic. Detailed mapping of the Zechstein Supergroup has revealed that the evolution of the extensional system was influenced by the ESE–WNW-striking anhydrite–carbonate Zechstein shelf-margin. The occurrence of variable-thickness, low-velocity sediments within the graben impacts seismic imaging and depth conversion, leading to prospective structures being overlooked; something that has implications for prospectivity in the SNS and other evaporite basins where similar graben occur.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.