{"title":"Fatigue and Fracture Behavior of AlSi10Mg Manufactured by Selective Laser Melting: A Review","authors":"Z. Jiang, J. Sun, F. Berto, X. Wang, G. Qian","doi":"10.1134/S102995992304001X","DOIUrl":null,"url":null,"abstract":"<p>Selective laser melting (SLM) is one of the most promising metal additive manufacturing technologies. SLMed Al-Si alloys have been widely used in the rail transport, aerospace, and automotive industries. Recently, the fatigue and fracture properties of SLMed Al-Si alloys have attracted considerable attention due to their application in critical load-bearing structures. This review aims to better understand the recent progress on the fatigue and fracture investigations of SLMed Al-Si alloys, especially AlSi10Mg, with emphasis on the effect of defects, heterogeneous microstructure, residual stress, and post-treatment methods. In addition, fatigue and fracture modeling methods are discussed. Finally, the challenges and future research opportunities are prospected.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 4","pages":"367 - 390"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S102995992304001X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
Selective laser melting (SLM) is one of the most promising metal additive manufacturing technologies. SLMed Al-Si alloys have been widely used in the rail transport, aerospace, and automotive industries. Recently, the fatigue and fracture properties of SLMed Al-Si alloys have attracted considerable attention due to their application in critical load-bearing structures. This review aims to better understand the recent progress on the fatigue and fracture investigations of SLMed Al-Si alloys, especially AlSi10Mg, with emphasis on the effect of defects, heterogeneous microstructure, residual stress, and post-treatment methods. In addition, fatigue and fracture modeling methods are discussed. Finally, the challenges and future research opportunities are prospected.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.