Extracting OLAP Cubes From Document-Oriented NoSQL Database Based on Parallel Similarity Algorithms

IF 1.7 Q2 Engineering
Farnaz Davardoost, Amin Babazadeh Sangar, K. Majidzadeh
{"title":"Extracting OLAP Cubes From Document-Oriented NoSQL Database Based on Parallel Similarity Algorithms","authors":"Farnaz Davardoost, Amin Babazadeh Sangar, K. Majidzadeh","doi":"10.1109/CJECE.2019.2953049","DOIUrl":null,"url":null,"abstract":"Today, the relational database is not suitable for data management due to the large variety and volume of data which are mostly untrusted. Therefore, NoSQL has attracted the attention of companies. Despite it being a proper choice for managing a variety of large volume data, there is a big challenge and difficulty in performing online analytical processing (OLAP) on NoSQL since it is schema-less. This article aims to introduce a model to overcome null value in converting document-oriented NoSQL databases into relational databases using parallel similarity techniques. The proposed model includes four phases, shingling, chunck, minhashing, and locality-sensitive hashing MapReduce (LSHMR). Each phase performs a proper process on input NoSQL databases. The main idea of LSHMR is based on the nature of both locality-sensitive hashing (LSH) and MapReduce (MR). In this article, the LSH similarity search technique is used on the MR framework to extract OLAP cubes. LSH is used to decrease the number of comparisons. Furthermore, MR enables efficient distributed and parallel computing. The proposed model is an efficient and suitable approach for extracting OLAP cubes from an NoSQL database.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2019.2953049","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2019.2953049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

Abstract

Today, the relational database is not suitable for data management due to the large variety and volume of data which are mostly untrusted. Therefore, NoSQL has attracted the attention of companies. Despite it being a proper choice for managing a variety of large volume data, there is a big challenge and difficulty in performing online analytical processing (OLAP) on NoSQL since it is schema-less. This article aims to introduce a model to overcome null value in converting document-oriented NoSQL databases into relational databases using parallel similarity techniques. The proposed model includes four phases, shingling, chunck, minhashing, and locality-sensitive hashing MapReduce (LSHMR). Each phase performs a proper process on input NoSQL databases. The main idea of LSHMR is based on the nature of both locality-sensitive hashing (LSH) and MapReduce (MR). In this article, the LSH similarity search technique is used on the MR framework to extract OLAP cubes. LSH is used to decrease the number of comparisons. Furthermore, MR enables efficient distributed and parallel computing. The proposed model is an efficient and suitable approach for extracting OLAP cubes from an NoSQL database.
基于并行相似度算法的面向文档NoSQL数据库OLAP多维数据集提取
如今,关系数据库不适合进行数据管理,因为数据的种类和数量很大,而这些数据大多是不可信的。因此,NoSQL引起了企业的关注。尽管它是管理各种大容量数据的合适选择,但在NoSQL上执行在线分析处理(OLAP)存在很大的挑战和困难,因为它是无模式的。本文旨在介绍一种利用并行相似技术将面向文档的NoSQL数据库转换为关系数据库时克服空值的模型。所提出的模型包括四个阶段,shingling、chunck、minhashing和位置敏感哈希MapReduce(LSHMR)。每个阶段都对输入NoSQL数据库执行适当的处理。LSHMR的主要思想是基于位置敏感哈希(LSH)和MapReduce(MR)的本质。在本文中,LSH相似性搜索技术被用于MR框架来提取OLAP多维数据集。LSH用于减少比较次数。此外,MR实现了高效的分布式和并行计算。所提出的模型是一种从NoSQL数据库中提取OLAP多维数据集的有效且合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信