Almost $\alpha$-Hardy-Rogers-$F$-contractions and their applications

IF 0.5 Q3 MATHEMATICS
A. Tomar, Ritu Sharma
{"title":"Almost $\\alpha$-Hardy-Rogers-$F$-contractions and their applications","authors":"A. Tomar, Ritu Sharma","doi":"10.52737/18291163-2019.11.11-1-19","DOIUrl":null,"url":null,"abstract":"The aim of this article is to introduce the notion of almost $\\alpha$-Hardy-Rogers-$F$-contractions in the partial metric space and utilize it to establish the existence of a unique fixed point. Some examples are given to demonstrate the validity of our main result. Our results generalize classical and newer results in the literature. As an application, we solve the initial value problem of damped harmonic oscillator and a nonlinear fractional differential equation satisfying periodic boundary conditions, which demonstrates the importance of our contraction and provides motivation for such investigations.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2019.11.11-1-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this article is to introduce the notion of almost $\alpha$-Hardy-Rogers-$F$-contractions in the partial metric space and utilize it to establish the existence of a unique fixed point. Some examples are given to demonstrate the validity of our main result. Our results generalize classical and newer results in the literature. As an application, we solve the initial value problem of damped harmonic oscillator and a nonlinear fractional differential equation satisfying periodic boundary conditions, which demonstrates the importance of our contraction and provides motivation for such investigations.
几乎$\alpha$- hardy - rogers -$F$-缩约及其应用
本文的目的是引入部分度量空间中几乎$\alpha$-Hardy-Rogers-$F$-收缩的概念,并利用它来建立唯一不动点的存在性。通过实例验证了主要结果的正确性。我们的结果推广了文献中的经典和新结果。作为一个应用,我们解决了阻尼谐振子的初值问题和一个满足周期边界条件的非线性分式微分方程,这证明了我们的收缩的重要性,并为此类研究提供了动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信