Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve

Pub Date : 2020-03-05 DOI:10.5802/jtnb.1183
Yukako Kezuka
{"title":"Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve","authors":"Yukako Kezuka","doi":"10.5802/jtnb.1183","DOIUrl":null,"url":null,"abstract":"Given any integer $N>1$ prime to $3$, we denote by $C_N$ the elliptic curve $x^3+y^3=N$. We first study the $3$-adic valuation of the algebraic part of the value of the Hasse-Weil $L$-function $L(C_N,s)$ of $C_N$ over $\\mathbb{Q}$ at $s=1$, and we exhibit a relation between the $3$-part of its Tate-Shafarevich group and the number of distinct prime divisors of $N$ which are inert in the imaginary quadratic field $K=\\mathbb{Q}(\\sqrt{-3})$. In the case where $L(C_N,1)\\neq 0$ and $N$ is a product of split primes in $K$, we show that the order of the Tate-Shafarevich group as predicted by the conjecture of Birch and Swinnerton-Dyer is a perfect square.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Given any integer $N>1$ prime to $3$, we denote by $C_N$ the elliptic curve $x^3+y^3=N$. We first study the $3$-adic valuation of the algebraic part of the value of the Hasse-Weil $L$-function $L(C_N,s)$ of $C_N$ over $\mathbb{Q}$ at $s=1$, and we exhibit a relation between the $3$-part of its Tate-Shafarevich group and the number of distinct prime divisors of $N$ which are inert in the imaginary quadratic field $K=\mathbb{Q}(\sqrt{-3})$. In the case where $L(C_N,1)\neq 0$ and $N$ is a product of split primes in $K$, we show that the order of the Tate-Shafarevich group as predicted by the conjecture of Birch and Swinnerton-Dyer is a perfect square.
分享
查看原文
费马椭圆曲线扭转中心l值的Tamagawa数可整除性
给定任何整数$N>1$素数到$3$,我们用$C_N$表示椭圆曲线$x^3+y^3=N$。我们首先研究了$C_N$的Hasse-Weil$L$-函数$L(C_N,s)$在$s=1$时在$\mathbb{Q}$上的值的代数部分的$3$-dic赋值,并且我们展示了它的Tate-Shafarevich群的$3$-部分与$N$的不同素数的数量之间的关系,这些素数在虚二次域$K=\mathbb{Q}(\sqrt{-3})$中是惰性的。在$L(C_N,1)\neq0$和$N$是$K$中分裂素数的乘积的情况下,我们证明了由Birch和Swinnerton-Dyer猜想预测的Tate-Shafarevich群的阶是一个完全平方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信