Extracting Proceedings Data from Court Cases with Machine Learning

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-12-13 DOI:10.3390/stats5040079
Bruno Mathis
{"title":"Extracting Proceedings Data from Court Cases with Machine Learning","authors":"Bruno Mathis","doi":"10.3390/stats5040079","DOIUrl":null,"url":null,"abstract":"France is rolling out an open data program for all court cases, but with few metadata attached. Reusers will have to use named-entity recognition (NER) within the text body of the case to extract any value from it. Any court case may include up to 26 variables, or labels, that are related to the proceeding, regardless of the case substance. These labels are from different syntactic types: some of them are rare; others are ubiquitous. This experiment compares different algorithms, namely CRF, SpaCy, Flair and DeLFT, to extract proceedings data and uses the learning model assessment capabilities of Kairntech, an NLP platform. It shows that an NER model can apply to this large and diverse set of labels and extract data of high quality. We achieved an 87.5% F1 measure with Flair trained on more than 27,000 manual annotations. Quality may yet be improved by combining NER models by data type.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

France is rolling out an open data program for all court cases, but with few metadata attached. Reusers will have to use named-entity recognition (NER) within the text body of the case to extract any value from it. Any court case may include up to 26 variables, or labels, that are related to the proceeding, regardless of the case substance. These labels are from different syntactic types: some of them are rare; others are ubiquitous. This experiment compares different algorithms, namely CRF, SpaCy, Flair and DeLFT, to extract proceedings data and uses the learning model assessment capabilities of Kairntech, an NLP platform. It shows that an NER model can apply to this large and diverse set of labels and extract data of high quality. We achieved an 87.5% F1 measure with Flair trained on more than 27,000 manual annotations. Quality may yet be improved by combining NER models by data type.
用机器学习从法庭案件中提取诉讼数据
法国正在为所有法庭案件推出一个开放数据程序,但几乎没有附带元数据。Reusers必须在案件正文中使用命名实体识别(NER)来从中提取任何价值。任何法庭案件都可能包括多达26个与诉讼程序相关的变量或标签,无论案件内容如何。这些标签来自不同的句法类型:其中一些是罕见的;其他的则无处不在。本实验比较了不同的算法,即CRF、SpaCy、Flair和DeLFT,以提取诉讼数据,并使用了NLP平台Kairntech的学习模型评估能力。它表明,NER模型可以应用于这一庞大而多样的标签集,并提取高质量的数据。Flair对27000多个手动注释进行了训练,我们获得了87.5%的F1测量结果。还可以通过按数据类型组合NER模型来提高质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信